72 research outputs found

    Complete Genome Sequence of the Plant-Pathogenic Fungus Colletotrichum lupini

    Get PDF
    Colletotrichum is a fungal genus (Ascomycota, Sordariomycetes, Glomerellaceae) that includes many economically important plant pathogens that cause devastating diseases of a wide range of plants. In this work, using a combination of long- and short-read sequencing technologies, we sequenced the genome of Colletotrichum lupini RB221, isolated from white lupin (Lupinus albus) in France during a survey in 2014. The genome was assembled into 11 nuclear chromosomes and a mitochondrial genome with a total assembly size of 63.41 Mb and 36.55 kb, respectively. In total, 18,324 protein-encoding genes have been predicted, of which only 39 are specific to C. lupini. This resource will provide insight into pathogenicity factors and will help provide a better understanding of the evolution and genome structure of this important plant pathogen

    Towards a multimedia knowledge-based agent with social competence and human interaction capabilities

    Get PDF
    We present work in progress on an intelligent embodied conversation agent in the basic care and healthcare domain. In contrast to most of the existing agents, the presented agent is aimed to have linguistic cultural, social and emotional competence needed to interact with elderly and migrants. It is composed of an ontology-based and reasoning-driven dialogue manager, multimodal communication analysis and generation modules and a search engine for the retrieval of multimedia background content from the web needed for conducting a conversation on a given topic.The presented work is funded by the European Commission under the contract number H2020-645012-RIA

    Look-alike humans identified by facial recognition algorithms show genetic similarities

    Get PDF
    We thank François Brunelle for providing the look-alike images. We thank CERCA Programme/Generalitat de Catalunya and the Josep Carreras Foundation for institutional support. This work was funded by the governments of Catalonia (2017SGR1080) and Spain (RTI2018-094049-B-I00, SAF2014-55000, and TIN2017-90124-P) and the Cellex Foundation. M.E. conceived and designed the study; R.S.J. M.R. C.A.G.-P. M.C.d.M. D.P. S.M. V.D. P.C. M.F.-B. I.O. C.L.-F. A.N. C.F.-T. D.A. F.M.S. X.B. A.V. and M.E. analyzed multiomics and questionnaire data; R.J. and M.E. wrote the manuscript with contributions and approval from all authors. M.E. is a consultant of Ferrer International and Quimatryx. S.M. is an employee of Ferrer International. C.F.-T. is chief technical officer of Herta Security.We thank François Brunelle for providing the look-alike images. We thank CERCA Programme/Generalitat de Catalunya and the Josep Carreras Foundation for institutional support. This work was funded by the governments of Catalonia (2017SGR1080) and Spain (RTI2018-094049-B-I00, SAF2014-55000, and TIN2017-90124-P) and the Cellex Foundation.The human face is one of the most visible features of our unique identity as individuals. Interestingly, monozygotic twins share almost identical facial traits and the same DNA sequence but could exhibit differences in other biometrical parameters. The expansion of the world wide web and the possibility to exchange pictures of humans across the planet has increased the number of people identified online as virtual twins or doubles that are not family related. Herein, we have characterized in detail a set of "look-alike" humans, defined by facial recognition algorithms, for their multiomics landscape. We report that these individuals share similar genotypes and differ in their DNA methylation and microbiome landscape. These results not only provide insights about the genetics that determine our face but also might have implications for the establishment of other human anthropometric properties and even personality characteristics

    Molecular diversity of anthracnose pathogen populations associated with UK strawberry production suggests multiple introductions of three different Colletotrichum species.

    Get PDF
    Fragaria × ananassa (common name: strawberry) is a globally cultivated hybrid species belonging to Rosaceae family. Colletotrichum acutatum sensu lato (s.l.) is considered to be the second most economically important pathogen worldwide affecting strawberries. A collection of 148 Colletotrichum spp. isolates including 67 C. acutatum s.l. isolates associated with the phytosanitary history of UK strawberry production were used to characterize multi-locus genetic variation of this pathogen in the UK, relative to additional reference isolates that represent a worldwide sampling of the diversity of the fungus. The evidence indicates that three different species C. nymphaeae, C. godetiae and C. fioriniae are associated with strawberry production in the UK, which correspond to previously designated genetic groups A2, A4 and A3, respectively. Among these species, 12 distinct haplotypes were identified suggesting multiple introductions into the country. A subset of isolates was also used to compare aggressiveness in causing disease on strawberry plants and fruits. Isolates belonging to C. nymphaeae, C. godetiae and C. fioriniae representative of the UK anthracnose pathogen populations showed variation in their aggressiveness. Among the three species, C. nymphaeae and C. fioriniae appeared to be more aggressive compared to C. godetiae. This study highlights the genetic and pathogenic heterogeneity of the C. acutatum s.l. populations introduced into the UK linked to strawberry production

    The definitions of three-dimensional landmarks on the human face: an interdisciplinary view

    Get PDF
    The analysis of shape is a key part of anatomical research and in the large majority of cases landmarks provide a standard starting point. However, while the technology of image capture has developed rapidly and in particular three-dimensional imaging is widely available, the de nitions of anatomical landmarks remain rooted in their two-dimensional origins. In the important case of the human face, standard de nitions often require careful orientation of the subject. This paper considers the de nitions of facial landmarks from an interdis- ciplinary perspective, including biological and clinical motivations, issues associated with imaging and subsequent analysis, and the mathematical definition of surface shape using differential geometry. This last perspective provides a route to de nitions of landmarks based on surface curvature, often making use of ridge and valley curves, which is genuinely three-dimensional and is independent of orientation. Specific definitions based on curvature are proposed. These are evaluated, along with traditional definitions, in a study which uses a hierarchical (random e ects) model to estimate the error variation which is present at several different levels within the image capture process. The estimates of variation at these different levels are of interest in their own right but, in addition, evidence is provided that variation is reduced at the observer level when the new landmark definitions are used

    Look-alike humans identified by facial recognition algorithms show genetic similarities

    Get PDF
    The human face is one of the most visible features of our unique identity as individuals. Interestingly, monozygotic twins share almost identical facial traits and the same DNA sequence but could exhibit differences in other biometrical parameters. The expansion of the world wide web and the possibility to exchange pictures of humans across the planet has increased the number of people identified online as virtual twins or doubles that are not family related. Herein, we have characterized in detail a set of “look-alike” humans, defined by facial recognition algorithms, for their multiomics landscape. We report that these individuals share similar genotypes and differ in their DNA methylation and microbiome landscape. These results not only provide insights about the genetics that determine our face but also might have implications for the establishment of other human anthropometric properties and even personality characteristics.This work was funded by the governments of Catalonia (2017SGR1080) and Spain (RTI2018-094049-B-I00, SAF2014-55000, and TIN2017-90124-P) and the Cellex Foundation

    Population genomics provide insights into the global genetic structure of Colletotrichum graminicola, the causal agent of maize anthracnose

    Get PDF
    Understanding the genetic diversity and mechanisms underlying genetic variation in pathogen populations is crucial to the development of effective control strategies. We investigated the genetic diversity and reproductive biology of Colletotrichum graminicola isolates which infect maize by sequencing the genomes of 108 isolates collected from 14 countries using restriction site-associated DNA sequencing (RAD-seq) and whole-genome sequencing (WGS). Clustering analyses based on single-nucleotide polymorphisms revealed three genetic groups delimited by continental origin, compatible with short-dispersal of the pathogen and geographic subdivision. Intra- and intercontinental migration was observed between Europe and South America, likely associated with the movement of contaminated germplasm. Low clonality, evidence of genetic recombination, and high phenotypic diversity were detected. We show evidence that, although it is rare (possibly due to losses of sexual reproduction- and meiosis-associated genes) C. graminicola can undergo sexual recombination. Our results support the hypotheses that intra- and intercontinental pathogen migration and genetic recombination have great impacts on the C. graminicola population structure

    Population Genomics Provide Insights into the Global Genetic Structure of \u3ci\u3eColletotrichum graminicola\u3c/i\u3e, the Causal Agent of Maize Anthracnose

    Get PDF
    Understanding the genetic diversity and mechanisms underlying genetic variation in pathogen populations is crucial to the development of effective control strategies. We investigated the genetic diversity and reproductive biology of Colletotrichum graminicola isolates which infect maize by sequencing the genomes of 108 isolates collected from 14 countries using restriction site-associated DNA sequencing (RAD-seq) and wholegenome sequencing (WGS). Clustering analyses based on single-nucleotide polymorphisms revealed three genetic groups delimited by continental origin, compatible with short-dispersal of the pathogen and geographic subdivision. Intra- and intercontinental migration was observed between Europe and South America, likely associated with the movement of contaminated germplasm. Low clonality, evidence of genetic recombination, and high phenotypic diversity were detected. We show evidence that, although it is rare (possibly due to losses of sexual reproduction- and meiosis-associated genes) C. graminicola can undergo sexual recombination. Our results support the hypotheses that intra- and intercontinental pathogen migration and genetic recombination have great impacts on the C. graminicola population structure

    Migration and genetic recombination shape the global population structure of Colletotrichum graminicola, the causal agent of maize anthracnose.

    Get PDF
    Maize anthracnose, caused by the ascomycete fungus Colletotrichum graminicola, is an important crop disease worldwide. Understanding the genetic diversity and mechanisms underlying genetic variation in pathogen populations is crucial to the development of effective control strategies. The genus Colletotrichum is largely recognized as asexual, but several species have been reported to have a sexual cycle. We employed a population genomics approach to investigate the genetic diversity and reproductive biology of C. graminicola isolates infecting maize. We sequenced 108 isolates of C. graminicola collected in 14 countries using restriction site-associated DNA sequencing (RAD-Seq) and whole-genome sequencing (WGS). Clustering analyses based on single-nucleotide polymorphisms showed populational differentiation at a global scale, with three genetic groups delimited by continental origin, corresponding to the isolates from South America, Europe, and North America, compatible with short-dispersal of the pathogen, and geographic subdivision. Intra and inter-continental migration was predicted between Europe and South America, likely associated with the movement of contaminated germplasm. Low clonality and evidence of genetic recombination were detected from the analysis of linkage disequilibrium and the pairwise homoplasy index (PHI) test for clonality. Although the sexual state of C. graminicola has only been reported in lab conditions, we showed strong evidence that genetic recombination have a great impact on C. graminicola population structure, in contrast to the traditional view of C. graminicola being mainly clonal

    Population genomics provide insights into the global genetic structure of Colletotrichum graminicola, the causal agent of maize anthracnose.

    Get PDF
    Abstract: Understanding the genetic diversity and mechanisms underlying genetic variation in pathogen populations is crucial to the development of effective control strategies. We investigated the genetic diversity and reproductive biology of Colletotrichum graminicola isolates which infect maize by sequencing the genomes of 108 isolates collected from 14 countries using restriction site-associated DNA sequencing (RAD-seq) and whole-genome sequencing (WGS). Clustering analyses based on single-nucleotide polymorphisms revealed three genetic groups delimited by continental origin, compatible with short-dispersal of the pathogen and geographic subdivision. Intra- and intercontinental migration was observed between Europe and South America, likely associated with the movement of contaminated germplasm. Low clonality, evidence of genetic recombination, and high phenotypic diversity were detected. We show evidence that, although it is rare (possibly due to losses of sexual reproduction- and meiosis-associated genes) C. graminicola can undergo sexual recombination. Our results support the hypotheses that intra- and intercontinental pathogen migration and genetic recombination have great impacts on the C. graminicola population structure. Importance: Plant pathogens cause significant reductions in yield and crop quality and cause enormous economic losses worldwide. Reducing these losses provides an obvious strategy to increase food production without further degrading natural ecosystems; however, this requires knowledge of the biology and evolution of the pathogens in agroecosystems. We employed a population genomics approach to investigate the genetic diversity and reproductive biology of the maize anthracnose pathogen (Colletotrichum graminicola) in 14 countries. We found that the populations are correlated with their geographical origin and that migration between countries is ongoing, possibly caused by the movement of infected plant material. This result has direct implications for disease management because migration can cause the movement of more virulent and/or fungicide-resistant genotypes. We conclude that genetic recombination is frequent (in contrast to the traditional view of C. graminicola being mainly asexual), which strongly impacts control measures and breeding programs aimed at controlling this disease.On-line first
    corecore