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ABSTRACT Understanding the genetic diversity and mechanisms underlying genetic var-
iation in pathogen populations is crucial to the development of effective control strategies.
We investigated the genetic diversity and reproductive biology of Colletotrichum gramini-
cola isolates which infect maize by sequencing the genomes of 108 isolates collected
from 14 countries using restriction site-associated DNA sequencing (RAD-seq) and whole-
genome sequencing (WGS). Clustering analyses based on single-nucleotide polymorphisms
revealed three genetic groups delimited by continental origin, compatible with short-dis-
persal of the pathogen and geographic subdivision. Intra- and intercontinental migration
was observed between Europe and South America, likely associated with the movement
of contaminated germplasm. Low clonality, evidence of genetic recombination, and high
phenotypic diversity were detected. We show evidence that, although it is rare (possibly
due to losses of sexual reproduction- and meiosis-associated genes) C. graminicola can
undergo sexual recombination. Our results support the hypotheses that intra- and inter-
continental pathogen migration and genetic recombination have great impacts on the C.
graminicola population structure.

IMPORTANCE Plant pathogens cause significant reductions in yield and crop quality
and cause enormous economic losses worldwide. Reducing these losses provides an
obvious strategy to increase food production without further degrading natural
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ecosystems; however, this requires knowledge of the biology and evolution of the
pathogens in agroecosystems. We employed a population genomics approach to inves-
tigate
the genetic diversity and reproductive biology of the maize anthracnose pathogen
(Colletotrichum graminicola) in 14 countries. We found that the populations are corre-
lated with their geographical origin and that migration between countries is ongoing,
possibly caused by the movement of infected plant material. This result has direct impli-
cations for disease management because migration can cause the movement of more
virulent and/or fungicide-resistant genotypes. We conclude that genetic recombination
is frequent (in contrast to the traditional view of C. graminicola being mainly asexual),
which strongly impacts control measures and breeding programs aimed at controlling
this disease.

KEYWORDS fungal plant pathogen, population genetics, phylogeography,
phytopathology, recombination, migration, population genomics

Crop diseases are one of the biggest concerns in global agriculture, responsible for
major losses in food production (1, 2). Fungi are the primary causal agents of plant dis-

eases and can cause catastrophic damage (3, 4). Disease outbreaks caused by fungal plant
pathogens have increased in recent decades and are recognized as emergent threats to
food security worldwide (5–8). Human activity tends to intensify fungal disease dispersal
by promoting the movement of pathogens far from their native location (9, 10). The modi-
fication of natural environments caused by modern agriculture provides new opportunities
for natural selection (10). Employing crops with limited genetic diversity increases the risk
of global disease spread because pathogen genotypes can rapidly spread through geneti-
cally uniform host populations (11, 12). Additionally, ongoing climate changes can shift
plant-pathogen distributions on a global scale because temperature changes may affect
disease development, aiding in the spread and survival of pathogens and their establish-
ment in hitherto unsuitable regions (8, 12, 13).

Maize (Zea mays) is the second most extensively cultivated cereal crop globally, with a
harvested area of almost 200 million hectares (14). Together with rice and wheat, maize sup-
plies nearly half of all daily calories in human food, with maize being responsible for roughly
10% of that total (14, 15). Although many diseases negatively impact maize production,
anthracnose is one of the most important diseases, and requires the use of integrated prac-
tices to control it (16–19). Anthracnose disease is caused by Colletotrichum graminicola, a
haploid ascomycete fungus that can infect most plant tissues, although stalk rot and seedling
blight can cause the most significant economic damage (20–22). Taxonomically, C. gramini-
cola belongs to the Graminicola species complex, a well-defined monophyletic clade encom-
passing 16 Colletotrichum species pathogenic to the Poaceae family (22–24).

Prior to 1960, maize anthracnose was a minor leaf spot disease in the USA, and the
causal agent C. graminicola was primarily studied for its taxonomic significance (21–
25). However, this view changed during the following decades, when devastating out-
breaks caused unexpected losses across the north-central and eastern regions of the
USA (18, 21). Afterwards, the disease became increasingly common and, in some sea-
sons, extremely destructive throughout the eastern USA (26, 27). The occurrence of
these outbreaks is thought to be associated with the use of hybrids which are particu-
larly susceptible to anthracnose, more favorable weather conditions, and the emer-
gence of more aggressive strains of the pathogen with its rapid spread through the
maize belt (28–30). Nowadays, maize anthracnose is a well-established endemic dis-
ease in the USA, and it is better managed, mainly through the use of resistant cultivars,
but it still can cause important damage in some regions of the country (31–35). Given
the history of the disease, it may have the potential to become much more significant
in the future.

Outside the USA, C. graminicola is globally distributed, and it is of major importance
in the Americas and other regions of the world (36). In North America, Canada reports
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variable disease incidence, but anthracnose is still a significant concern (34, 37, 38). In
addition to temperate areas, maize anthracnose is also reported in tropical and sub-
tropical regions, including Brazil and Argentina, where warm and humid conditions
contribute to augment the disease (39–46). Since the first report of maize anthracnose
in Europe (Italy in 1852) (47), several countries have reported its occurrence, including
Germany, France, the former Czechoslovakia (48–50), and more recently Croatia,
Portugal, Switzerland, Bosnia, and Herzegovina (51–54). Recently, maize anthracnose
was also reported in China (55), indicating that the pathogen’s geographic range is
increasing.

The wide dissemination of pathogens over continents indicates an intense dispersal of
their propagules, either from aerial dispersal or via human-mediated movement of infected
plant material and/or seeds (11, 56, 57). The nature of fungal propagules, i.e., their small
and numerous spores, favors long-distance dispersal, resulting in the spread of pathogens
across and between continents (11). Although many pathogens are cosmopolitan in their
distribution, their populations often differ in some respects: for instance, virulence, resist-
ance to chemical controls, and genetic diversity (58). The migration of plant pathogens has
epidemiological and evolutionary implications because the movement of individuals from
one population to another may result in gene flow when migrants contribute their genes
to the gene pool of another population (59). Colletotrichum graminicola is seed-transmitted,
also known as a seed-born pathogen (60–62); therefore, contaminated seeds serve as inoc-
ulum sources and promote pathogen movement. Furthermore, through the transport of
seeds and infected plant material, fungi can naturally be spread via the dispersal of both
sexual and asexual spores (11, 56, 63). In addition to the dispersal process, the reproductive
biology of a species is crucial to understanding the evolutionary forces which shape the
genetic diversity of pathogen populations across time and space (64). Asexual reproduc-
tion predominates in most plant-pathogenic fungi, but many species undergo sexual
cycles, and many others employ both reproductive strategies (59). Sexual reproduction
produces genetic recombination, increasing genotype diversity and generating random
associations between alleles at different loci (65, 66). However, alternative mechanisms,
such as parasexual reproduction and a cryptic sexual cycle, can also create genetic recom-
bination in fungal species (67, 68). Although sexual reproduction may be costly (in terms of
fitness) and disrupt favorable gene combinations, experimental evidence has suggested
that sexual reproduction in fungi may increase the rate of adaptation to new environments
(69, 70). Recombination can create particular genotypes through the combination of more
fit alleles, which can accelerate the evolution of strains which have resistance genes against
multiple fungicides and overcome the R genes of resistant cultivars (65, 71, 72).

The genetic control underlying sexual development in the genus Colletotrichum is
not well known, and it differs from the typical bipolar mating system of ascomycetes
(73–75). All species studied so far contain just one of the two mating types alleles typi-
cal of ascomycetes (MAT1-1/2) (22), which would seemingly limit their ability to mate.
However, sexual reproduction has been demonstrated for at least some Colletotrichum
species, including C. graminicola. Although the teleomorph of C. graminicola has been
characterized under laboratory conditions (74, 75), the asexual state is more often
found in the field and plays a significant role in the life cycle. This species is reported
to be homothallic (74), i.e., possessing both sets of genes, and thus can complete a sex-
ual cycle independently (76). However, some strains are self-sterile and cross-fertile (75,
77), which means that some strains can reproduce sexually when cultured alone while
others require a mating partner to produce sexual offspring.

Genetic recombination is reported to be an important factor in the ecology and evolu-
tion of many Colletotrichum species (78–83). However, only a few population studies have
characterized the genetic diversity of grass-infecting Colletotrichum species, such as C. subli-
neola and C. cereale (81–85), and little is known about C. graminicola population diversity.
Studies using single marker genes and limited sample sizes have shown high genetic vari-
ability in C. graminicola isolates (83, 86). Therefore, in this study, we investigated the global
population structure of C. graminicola to gain insights into its reproductive biology. Our
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population genomic analyses using single-nucleotide polymorphisms (SNPs) revealed pop-
ulation subdivision into three genetic clades with isolates grouped according to their coun-
try of origin, with distinct levels of genetic diversity between them, suggesting different ev-
olutionary histories. We found that intra- and intercontinental migration, mainly between
Europe and South America, is likely associated with the movement of contaminated seeds.
We discussed the possible evolutionary origins of these genetic groups, the impact of
recombination on the genetic structure, and the potential for maize anthracnose to
become a much more significant disease in the future.

RESULTS
Population genetic analyses reveal three lineages of C. graminicola. A total of

5,811 biallelic variants were detected among 108 C. graminicola isolates collected from
14 countries, and these were used for population genetic analyses (Fig. 1, Table S1).
Analysis of SNP density showed an average of 1.4 SNPs per 10 kb across all contigs.
Information on reads and coverage per individual is provided in Table S1 in the supple-
mental material.

Clustering methods revealed population subdivisions, supporting the existence of
three genetic groups. A principal-component analysis (PCA) and discriminate analysis
of principal components (DAPC) grouped individuals according to their geographic ori-
gin (Fig. 2a, Fig. S1). However, all isolates from Argentina grouped together with the
European isolates, suggesting migration between groups. The isolates CBS113173 and
MAFF511343, from Zimbabwe and Japan, respectively, and obtained from culture col-
lections did not group with the main three genetic clusters, suggesting that they repre-
sent additional major C. graminicola clades. However, larger samples from these geo-
graphic regions would be necessary to draw any conclusions.

The snapclust function, based on the Bayesian information criterion (BIC) criterion,
supported the clustering pattern, showing an optimum value of K = 3 clusters (Fig. S2).
A neighbor-net network generated by SplitsTree also identified three groups in the

FIG 1 Worldwide Colletotrichum graminicola sampling. Red circles indicate the number of isolates sampled. Artwork created with mapchart.net.
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data, here referred to as the Brazilian (BR), European (EU), and North American (NA)
clades (Fig. 3). Interestingly, some isolates clustered with clusters of isolates from other
geographic locations, as indicated in Fig. 3 (red). An analysis of molecular variance
(AMOVA) performed between C. graminicola clusters showed that 65.5% of the total
genetic variance was within clusters and 34.5% was among them. Pairwise FST values
between clusters were significant and revealed strong differentiation, ranging from
0.26 to 0.42 (Table S3).

Among the 108 isolates, we detected 76 unique multilocus genotypes (MLGs) and 15
MLGs shared between at least 2 isolates. Most MLGs included isolates from the European
clade (13 MLGs in total) and were shared between isolates from the same clade and coun-
try (Table S4). However, one MLG encompassed isolates from France and Switzerland (F-
40300-3 and SW-8046-3), and another encompassed isolates from Argentina and Croatia
(ARG-2700-2 and CRO-I-35). Two isolates from culture collections (M1.001 and LAR318) ins
the USA and Nigeria were also shared. These shared genotypes were almost identical ge-
netically, with few SNPs between samples (Table S4). The minimum spanning network
(MSN) showed a similar relationship among these genotypes. The European cluster dis-
played an inner position with genetically closer MLGs, while the Brazilian and North
American clusters were placed on the edges of the network, likely due to their separate ev-
olutionary histories.

To estimate genetic diversity, we computed the number of segregating sites within
genetic groups. Genetic diversity was twice as high in the North American clade compared
to the Brazilian and European clades (Table 1). Based on all the SNPs from the full data set,
the North American clade showed almost all sites segregating when all isolates belonging
to this clade were considered. In contrast, isolates from the European clade showed fewer
segregating SNPs and consequently lower genetic diversity.

Footprints of recombination. We assessed the genomic impact of recombination by
analyzing patterns of linkage disequilibrium (LD). For this, we computed LD on the genetic
clusters separately to avoid combining evolutionarily distinct populations, which can lead
to overestimation of the linkage equilibrium (65). For all genetic clusters, the LD decayed

FIG 2 Population subdivision of Colletotrichum graminicola. (A) Principal-component analysis (PCA). Isolates are colored according to their
continent of origin. (B) Minimum spanning network (MSN) showing the multilocus genotypes (MLGs) based on Nei’s genetic distance. The
distance between nodes represents the genetic distance between MLGs. Each circle represents a distinct MLG, proportional in size to the
number of isolates with the genotype.
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quickly with physical distance (Fig. 4), reaching 50% of its maximum value in less than
10 kb; this suggests a random association of alleles at different loci, likely caused by recom-
bination events. We also used the pairwise homoplasy index (PHI) test implemented in
SplitsTree to test the null hypothesis of no recombination, which rejected the null hypothe-
sis for all three genetic populations (P, 0.001).

To test the hypothesis that C. graminicola sexual reproduction- and meiosis-associated

FIG 3 Neighbor-net network showing relationships between Colletotrichum graminicola isolates. Red color indicates “migrant” isolates, i.e., isolates in the
European clade. Isolates with pathogenic characterization are indicated by asterisks.
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genes were maintained, we explored the presence of 96 genes previously identified as
having roles in sexual reproduction in Ascomycetes. We observed the presence of 91 out
of 96 sex-related genes in three C. graminicola genomes (Table S5). Five genes, HOP1,
HOP2, MND1, PRE1, and PRE2, were not found in the C. graminicola genomes. The genes
HOP1, HOP2, and MND1 were also not found in the sexually reproducing fungi Neurospora
crassa, Podospora anserina, and Nectria haematococca, nor in any of the Sordariomycetes,
which may indicate that they are not required for the sexual cycle in this group (87). The
genes PRE1 and PRE2 are also not essential for mating, as no phenotypic change was
observed with gene-deletion mutants of these genes in C. fructicola (88). Only the isolates
M1.001, LARS318, and CBS113173 maintained all 91 genes needed for sexual reproduction.

Pathogenicity assays reveal large variation in virulence. Twenty-one isolates rep-
resentative of the clades identified in the phylogeny inference and showing diverse colony
morphology and pigmentation were chosen for pathogenic characterization (Fig. S3).
Considering their continental origins, we chose the following isolates: America, M1.001, A-
52339-1, A-52621-1, CA-N8H-5, CA-NOP-2CO, CA-CHAT-1, ARG-2700-2, ARG-2700-5, BR-
85925-1, and JAB2; Africa, CBS113173, LARS318; Europe, CBS252.59, CR-42230-1, CRO-I-41,
F-40300-1, F-64330-2, P-7565-072-3, SI-9253-1, and SW-8046-2; and Asia, MAFF511343. All
isolates except two, CBS252.59 and MAFF511343, were pathogenic on the maize cultivar

TABLE 1 SNP variation within Colletotrichum graminicola clustersa

Cluster SNPs (n)
BR 2,484
EU 2,077
NA 5,264
aSNP, single-nucleotide polymorphism; BR, Brazil; EU, Europe; NA, North America.

FIG 4 Linkage disequilibrium (LD) decay plots of three genetic populations of Colletotrichum graminicola (Brazilian, North American, and European clades).
LD was calculated for all pairs of SNPs less than 100 kb apart from each other.
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evaluated, producing necrotic lesions at the inoculation points by 4 days postinoculation
(dpi) (Fig. 5). Isolates CBS252.59 and MAFF511343 also failed to produce necrotic lesions at
6 dpi (data not shown). An analysis of variance (ANOVA) revealed significant differences in
virulence among the isolates (P , 0.0001) and a post hoc Tukey’s test revealed seven iso-
lates which were significantly more virulent and two which were significantly less virulent
than M1.001 (Fig. 5). Population structure was not correlated with virulence.

DISCUSSION

We used a population genomics approach to determine the genetic diversity of
C. graminicola isolates infecting maize sampled from 14 countries. Using SNP markers
generated through restriction site-associated DNA sequencing (RAD-seq) and whole-ge-
nome sequencing (WGS), we investigated the distribution of genetic variation consider-
ing our samples as a global population. We found populational differentiation on a
global scale, with three genetic groups delimited by continental origin, consistent with
short dispersal of the pathogen and geographic subdivision. However, we observed
intra- and intercontinental migration, possibly associated with the movement of conta-
minated seeds. The genetic clusters, corresponding to the Brazilian, European, and North
American clades, showed distinct levels of genetic diversity which could reflect different
evolutionary histories. Analysis of linkage disequilibrium and the pairwise homoplasy
index (PHI) test for clonality provided evidence of genetic recombination. Investigation
of sex-related genes revealed gene losses in most isolates. We have shown evidence
that, although it is rare (possibly due to losses of sexual reproduction- and meiosis-asso-
ciated genes), C. graminicola can undergo sexual recombination based on lab assays and
genomic analyses. We present the possible evolutionary origins of these genetic groups,

FIG 5 Pathogenic characterization of Colletotrichum graminicola isolates. (a) Graphic representation of 19 isolates in order of virulence (relative to the
control strain M1.001) in ascending order. The isolates CBS252.59 and MAFF511343 were nonpathogenic to the maize cultivar evaluated and are not shown
in the figure. Pathogenicity assay batch number is shown in parentheses. Isolates marked with an asterisk were significantly different (P , 0.001) from
strain M1.001 based on a post hoc Tukey’s test using a Bonferroni correction. (b) Necrotic lesions on maize leaves at 4 days after inoculation with spore
suspensions of the isolates.
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the impact of recombination on genetic structure, and the potential for maize anthrac-
nose to become a much more significant disease in the future.

Clustering analyses based on single-nucleotide polymorphisms showed strong pop-
ulation differentiation, with the isolates grouped according to their country of origin.
The European clade showed less genetic variation, a higher number of repeated MLGs,
and lower pairwise differentiation among clusters, suggesting a larger clonal compo-
nent compared to the other clades. Interestingly, all the shared genotypes were almost
genetically identical, suggesting that gene flow is dependent on the clonal isolates
generated by asexual reproduction. Most MLGs were shared between isolates from the
same cluster and country; however, one MLG encompassed isolates from France and
Switzerland (more than 1,000 km apart) and another included isolates from Argentina
and Croatia. In our cluster analyses, the European clade encompassed all isolates from
Argentina. Together, these results indicate intra- and intercontinental migration of this
pathogen. We argue a likely European origin of the isolates from Argentina due to the
movement of maize germplasm into South America. Maize breeders in North America
and Europe commonly use fields in South American (including Argentina) to advance
breeding programs during the Northern Hemisphere winter. Because Argentina is a
maize exporter, breeding programs represent a possible source of pathogen importa-
tion and consequently a source of pathogen introduction into new areas, for instance,
in Europe or elsewhere. This result is particularly important from an epidemiological
point of view, with direct implications for disease management because migration can
cause the movement of more virulent and/or fungicide resistant genotypes (59).

Contaminated seeds are thought to be the predominant form of dissemination for
C. graminicola (60–62). Fungi can naturally be spread via the dispersal of both sexual
and asexual spores, mainly caused by the transport of infected plant material (11, 56,
63). Dispersal of asexual conidia of C. graminicola is strongly dependent on water
splash and blowing raindrops, responsible for short-distance dispersal (21). Although
airborne dispersal is not typically documented, ascospore dispersal is associated with
long-distance dissemination because these spores can be ejected up and dispersed by
air currents, traveling longer distances (89, 90). If sexual reproduction occurs even spor-
adically in this species, it may contribute to long-distance dissemination, leading to a
broader pathogen distribution.

The North American clade is more genetically diverse and seems to have a separate
evolutionary history. This clade encompassed isolates from the United States and
Canada and one strain from Nigeria obtained from a culture collection. Although the
first report in the literature of a Colletotrichum species infecting maize came from Italy
in 1852 (47), we argue that the North American cluster may be the older lineage (or an-
cestral lineage), even though maize anthracnose was not described in the United
States until 1914 (91). Considering that Mesoamerica, most likely Mexico, is the center
of origin for maize (92, 93) and that the center of origin of a pathogenic species usually
corresponds to that of its host (94) this lineage may be the founder of the 1970s out-
break and may have served as the source for introductions in other continents, given
Mesoamerica’s proximity to the USA. The highest genetic diversity found in this lineage
also corroborates this hypothesis because a pathogen’s center of origin is likely to con-
sist of populations with more genetic variability than recently founded populations
(95). C. graminicola may have evolved together with its host in Central America and,
due to the expansion of maize production in the USA corn belt, have had an opportu-
nity to spread across the vast maize-growing areas. Alternatively, our sampling, which
consisted of a large range of years (1975 to 2016), may have overestimated the genetic
diversity of this group. A more contemporary sampling could reveal the current
genetic variation of North American populations.

In South America, isolates from Argentina and Brazil were grouped into separate
clades, suggesting independent introductions. In Brazil, the first disease report was in
1965 in the state of São Paulo (Campinas) (96). In the country, maize is planted in two
distinct growing seasons, with the first crop planted in the summer and the second
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during the winter. This practice contributes to an increasing primary inoculum in the
area. Cota et al. (41) reported a significant reduction in maize yield in tested hybrids
which was associated, among other factors, with higher pathogen aggressiveness and
greater genetic differentiation in populations during the crop cycle. This could indicate
changes in the population size and genetic composition, which may have contributed
to a higher disease virulence in the country.

We found molecular evidence of genetic recombination for the three C. graminicola popu-
lations detected in this study. The rapid decay of linkage disequilibrium and extensive reticula-
tions in the neighbor network is consistent with a possible history of recombination.
Furthermore, the PHI test for clonality detected recombination within each population. These
results corroborate a previous study that found evidence of recombination using the PHI test
at the chromosome level (97). Similar findings of low and fast LD decay have been reported in
other fungal plant pathogens (i.e., half its maximum value over a distance of 10 kb or less),
suggesting the occurrence of genetic mechanisms responsible for creating such patterns in
genomes (78, 98, 99). In addition, the signature of repeat-induced point mutation (RIP), a ge-
nome defense mechanism which occurs during sexual reproduction (100, 101), was detected
in C. graminicola genomes (102, 103). RIP mutations may indicate an ancestral state of sexual
reproduction or that meiosis cryptically occurs in nature (67, 104).

Despite C. graminicola being reported as a homothallic species, strains may exhibit
homothallism and heterothallism, although this phenomenon is not yet fully under-
stood (21). Investigation of fertility through crosses of the strains M1.001 and M5.001
produced exclusively heterothallic offspring, which led Vaillancourt et al. (75) to
hypothesize that unbalanced heterothallism could be involved in the mating system.
Our investigation of sexual reproduction-related genes revealed gene losses in most
isolates and in those species known to be self-fertile, such as C. salicis; and those
known to be self-sterile and cross-fertile, like C. fiorinae (105). Interestingly two genes
missing in all C. graminicola genomes analyzed were PPG1 and PRE2, which form a
pheromone receptor pair. The importance of this signaling pair varies among homo-
thallic ascomycetes. However, none of the deletion mutants obtained in Sordaria mac-
rospora, Aspergillus nidulans, or Gibberella zeae completely lost the capability to sexu-
ally cross (106–108).

Considering this evidence and the high completeness of the assemblies, we con-
clude that at least three of the C. graminicola isolates (M1.001, LARS318, and
CBS113173) maintained all the genes required to undergo sexual reproduction. This
finding also suggests that some lineages have lost the ability for sexual reproduction
or that not all sexual reproduction-related genes reported in other species are required
in Colletotrichum spp. (21). Considering the presence of homothallic and heterothallic
strains in this species, the lack of genes required to sexually cross in a strain could lead
to failure in sexual reproduction. In this scenario, sexual reproduction would become
rare (but not inconceivable) due to the low chance of two strains with a full set of
genes encountering themselves and mating.

The reproductive biology of the genus Colletotrichum is mixed, and the sexual state
of several species is unknown, although several species are known to have the capacity
for sexual reproduction. The sexual capability of C. graminicola is well-documented (74,
109). We experimentally demonstrated the sexual capability of C. graminicola isolates
to mate under lab conditions, as described by Vaillancourt et al. (75) (see Fig. S4 for
details), although the teleomorph has not yet been found in field conditions. Although
the absence of the sexual state in nature could lead to less recombination, population
genetic studies have shown that several Colletotrichum species known to be exclusively
asexual exhibit evidence of genetic recombination (78, 79, 110). Some studies have
described alternative mechanisms, such as the parasexual cycle, as being responsible
for creating genetic recombination in Colletotrichum species (75, 80, 111–113).

Species with the potential for genetic exchange are more likely to overcome control
measures because recombination can result in new combinations of alleles which
increase diversity and speed up adaptation at the field scale (59, 114). This study shows
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evidence that C. graminicola populations may have been affected by genetic recombina-
tion, but also that, even if it is rare (possibly due to frequent losses of sexual reproduc-
tion- and meiosis-associated genes), C. graminicola can undergo sexual recombination.
Fine-scale investigations at the genome level can be used to determine the real impact
of genetic recombination on genetic diversity and adaptation; for instance, whether
genetic exchange enhances virulence factors (also called fitness-related traits) in these
populations, as has been suggested for other fungal species (115–119). This can be par-
ticularly important in the agricultural pathosystem given that crop pathogens constantly
face a homogeneous environment which imposes strong directional selection, leading
to the evolution of more virulent and drug-resistant populations (94, 120).

We found no correlation between virulence and population structure, although we
observed substantial differences in the spectrum of virulence. Several isolates were
more aggressive than the strain M1.001, which was originally collected from North
America in 1972 during the US outbreak (121). This finding is particularly important
because this strain represents the genetic diversity existent in the outbreak and more
aggressive strains are currently present in nature, which may present a risk of the de-
velopment of new, even more destructive outbreaks. A pathogenicity assay was per-
formed in one maize line (Mo940) which was notably susceptible to anthracnose. The
use of distinct maize genotypes can result in different responses to fungal infection, as
has already been reported in previous studies, and it should be considered in further
pathogenic characterizations (40, 122, 123). Another significant aspect is that resist-
ance to maize anthracnose is inherited quantitatively, i.e., host resistance is controlled
by several genes with additive genetic effects (124–126). This fact may correlate with
the range of virulence found in this study. The three genetic clades of C. graminicola
detected may have distinct evolutionary origins, encompassing a diverse combination
of virulence genes, which could cause different defense responses in the host. We also
highlighted that the large variability in virulence should be considered in the screening
of resistant maize varieties. Population studies can support breeding programs by
investigating the intraspecific variability of C. graminicola populations because the
effectiveness of genetic resistance depends on knowledge of the genetic structure of
pathogens.

Conclusions. Our study represents the first investigation of the population structure of
C. graminicola infecting maize. The three main clades (North America, Brazilian, and European)
have different levels of genetic diversity, suggesting that each has a unique evolutionary his-
tory. We also found evidence of recent migration of isolates between Europe and Argentina,
possibly due to the importation of infected plant material. Although the sexual state of C. gra-
minicola has only been reported under lab conditions, we show strong evidence that genetic
recombination, whether by sexual reproduction or alternative mechanisms (such as the para-
sexual cycle), plays an important role in C. graminicola population structure. In contrast to the
traditional view of C. graminicola being mainly asexual, we conclude that genetic recombina-
tion is frequent. Fine-scale investigations at the genome level can be employed to understand
the real impact of recombination and gene flow on the genetic diversity and adaptation of
this species, with a direct effect on control measures and breeding programs aimed at resist-
ance. Finally, we warn that maize anthracnose has the potential to become much more signif-
icant in the future, mainly due to isolates which are highly aggressive against the cultivar eval-
uated, the geographic range expansion of the pathogen, and the increased susceptibility of
agroecosystems accentuated by ongoing climate changes.

MATERIALS ANDMETHODS
Sampling and isolation of C. graminicola. Fresh collections of C. graminicola samples were obtained

from symptomatic maize stems provided by an international network of maize researchers and producers,
allowing sampling from nine different countries where anthracnose disease is prevalent (Fig. 1). Eleven
C. graminicola isolates originally collected from five countries (Germany, Japan, Netherlands, Nigeria, and
Zimbabwe) (97, 127) were obtained from public culture collections (Table S1) and included in the collec-
tion. Symptomatic stems were dissected, surface-disinfected, and plated in culture medium for fungal iso-
lation, as previously described (20, 54). Fungal structures (hyphal tips, acervuli) emerging from maize tissue
were transferred to potato dextrose agar (PDA) medium, allowed to grow for 7 days at 23°C, then single-
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spore purified. Monosporic cultures were stored at 280°C from suspension conidia in 7.5% skim milk
(Merck, Darmstadt, Germany) mixed on silica gel (S/0730/53; Thermo Fisher Scientific, Waltham, MA, USA)
(128). Isolates were verified as C. graminicola by inspection of colony morphology, spore size, and shape,
and by sequencing of the internal transcribed spacer (ITS) region of rDNA using the primers ITS4 and ITS5
(129), following the PCR amplification conditions described by Rech et al. (97). The amplified ITS fragments
were purified using NucleoSpin gel and PCR Clean-Up kits (Macherey-Nagel, Düren, Germany) and
sequenced using Sanger technology by the University of Salamanca (Spain). Species identity was con-
firmed by BLAST searches performed against GenBank (NCBI). All materials used in this study were used
in accordance with the rights and obligations of the recipient as described in the International Treaty on
Plant Genetic Resources for Food and Agriculture adopted by the Food and Agriculture Organization
(FAO) on 3 November 2001.

DNA extraction, library preparation, and sequencing. Mycelia from monosporic cultures were
incubated on an orbital shaker in potato dextrose broth (PDB) (Difco, Becton, Dickinson and Company,
Franklin Lakes, NJ, USA) for 3 days at 25°C and 150 rpm under continuous light (52). Genomic DNA was
extracted using DNeasy Plant Mini Kits (Qiagen Inc., Valencia, CA, USA) and quantified using a Qubit 3.0
fluorimeter (Invitrogen, Waltham, MA, USA). DNA for C. graminicola isolates used for whole-genome
sequencing was extracted using the cetyltrimethylammonium-bromide (CTAB) protocol adapted from
Baek and Kernerley (130).

New DNA sequence data sets were generated from 97 C. graminicola isolates using either RAD-seq
or WGS; sequences for an additional 11 isolates were also included in the analyses (97) (Tables S1 and
S2). A total of 87 isolates were genotyped with RAD-seq by Floragenex Inc. (Beaverton, OR, USA). Briefly,
RAD-seq libraries with sample-specific barcode sequences were constructed from DNA digested with
the restriction enzyme PstI, then single-end sequenced (1 � 100 bp) on one lane using a TrueSeq PE150
kit (Illumina, Inc., San Diego, CA, USA) on an Illumina HiSeq 2000 instrument. WGS data were obtained
from seven C. graminicola isolates (CBS252.59, F-64330-2, F-64330-7, F-40330-1, SW-8046-2, CRO-I-35,
CR-10370-50) from libraries prepared using a Nextera XT DNA kit (Illumina, Inc.) and sequenced on an
Illumina HiSeq 4000 (2 � 150 bp). WGS data were obtained from six C. graminicola isolates (ARG-2700-2,
CA-CHAT-1, CA-N8H, CRO-I-41, P-7565-072-1, SW-8046-1) from paired-end libraries prepared using an
Illumina TruSeq DNA Nano kit and sequenced on an Illumina MiSeq (2 � 300 bp). Sequence quality was
checked on FastQC v0.11.7 (Babraham Bioinformatics, Cambridge, United Kingdom) and low-quality
reads and adaptors were trimmed with Trimmomatic v0.3.8 (131) using the default settings. De novo
assemblies were performed with SPAdes v3.11.1 (132). Low-coverage scaffolds were identified and those
with coverage of less than 10% of the nuclear genome (based on the coverage of the largest contig)
were removed. The contigs corresponding to the mitochondrial genome were identified by local
BLASTn using the C. graminicola mitochondrial sequence (accession no. CM001021.1) as the query
sequence. To identify the rRNA gene clusters, we used the following query sequences: XR_001139483
(28S, GLRG_12546); XR_001139484.1 (18S); and DQ003110.1 (18S rRNA gene, partial sequence; internal
transcribed spacer 1, 5.8S rRNA gene, and internal transcribed spacer 2, complete sequence; and 28S
rRNA gene, partial sequence). Matching contigs were also removed. The assembly completeness was
assessed using Busco v.3 (133) and the sordariomyceta_odb9 lineage data set.

Read mapping and SNP calling. The RAD-seq reads were inspected with FastQC v0.11.7 (Babraham
Bioinformatics, Cambridge, UK) to confirm quality and were demultiplexed and quality-filtered with the
process_radtags program in Stacks v.2.10 (134). The demultiplexed reads were trimmed using Trimmomatic
v0.3.8 (131) using the parameters ‘leading:15 trailing:15 slidingwindow:4:15 minlen:36’ and aligned to the C.
graminicola reference genome M1.001 (NCBI accession no. SAMN02953757) using BWA-MEM v0.7.8 (135)
with the default settings. Genetic variants were identified with FreeBayes v0.9.21 (136) using the default pa-
rameters. The WGS reads were quality-trimmed with Trimmomatic v0.3.8 and aligned to the reference ge-
nome with Speedseq v0.1.2 (137), which uses BWA-MEM v0.7.8 (135) for read mapping and FreeBayes
v0.9.21 (136) for variant identification. SNPs of high confidence were filtered using VCFtools v0.1.15 (138)
with the parameters ‘–max-alleles 2 -min-meanDP 30 -remove-indels -maf 0.03 -max-missing 1.’ Only bial-
lelic SNPs present in all isolates and sites with a minor allele frequency of less than 3% were kept in the
data set.

Population structure and genetic diversity. We defined a population as a group of individuals of
the same species which occupy the same area, colonize the same type of host simultaneously, and share
a common evolutionary history (59). Analysis of molecular variance was performed with the hypothesis
of no genetic differentiation using the package Poppr v2.8.6 (139). Weir and Cockerham’s genetic differ-
entiation index (FST) was calculated with the R package hierfstat v0.5-11 using the WC84 method (140).
We used three clustering methods to examine the C. graminicola population structure. First, we used a
principal-component analysis with a priori geographical knowledge from sampling (by continent). This
analysis was conducted in R with the package adegenet v2.0.1 (141) using the dudi.pca function.
Second, we performed a discriminate analysis of principal components with adegenet v2.0.1 (141). The
find.cluster function was used to identify the most likely grouping in the data based on the Bayesian in-
formation criterion calculated for 1 to 10 clusters. Third, to confirm the pattern of population subdivision
inferred by the PCA and DAPC, we used the fast maximum-likelihood genetic clustering method snap-
clust (142) in adegenet v2.0.1 (141). The function snapclust.choosek was used as an initial step to deter-
mine the optimal number of clusters (K) based on the BIC. Additionally, we implemented a neighbor net-
work using the software SplitsTree v4 (143) to visualize phylogenetic signals, indicated by the presence
of reticulations in the network, from a distance matrix with default parameters.

The number of multilocus genotypes (MLGs) was calculated using the R package Poppr v2.8.6 (139).
We used the mgl.filter function to determine the true number of MLGs from a genetic distance obtained

Population Genomics of the Maize Anthracnose Pathogen mBio

January/February 2023 Volume 14 Issue 1 10.1128/mbio.02878-22 12

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

bi
o 

on
 0

4 
M

ay
 2

02
3 

by
 1

37
.2

04
.2

11
.1

07
.

https://www.ncbi.nlm.nih.gov/nuccore/CM001021.1
https://www.ncbi.nlm.nih.gov/nuccore/XR_001139483
https://www.ncbi.nlm.nih.gov/nuccore/XR_001139484.1
https://www.ncbi.nlm.nih.gov/nuccore/DQ003110.1
https://www.ncbi.nlm.nih.gov/biosample/SAMN02953757
https://journals.asm.org/journal/mbio
https://doi.org/10.1128/mbio.02878-22


by the diss.dist function using the threshold determined in the cutoff_predictor tool. To visualize rela-
tionships among genotypes, an MSN was generated using the msn function in Poppr. Genetic diversity
was estimated by comparison of the number of SNP variations by counting the number of segregating
sites between individuals, using the find.variations tool in Geneious (144).

Linkage disequilibrium. The coefficient of linkage disequilibrium (r2) (145) was calculated using
VCFtools (138). The rate of decay in linkage disequilibrium with physical distance was calculated for all
pairs of SNPs less than 100 kb apart using the option -hap-r2 and excluding sites with minor allele fre-
quencies below 5%. We also used the pairwise homoplasy index (PHI) test implemented in SplitsTree v4
(143) to test the null hypothesis of clonality.

Investigation of putative sexual reproduction-related genes. To identify orthologues of sexual
reproduction-related genes in the C. graminicola genomes, we used a set of 96 genes with known roles
in sexual reproduction in fungal model systems (87, 88). First, we performed BLASTp searches (E value
cutoff = 1e 23; 80% amino acid sequence similarity) in the proteome of the reference strain (M1.001)
(121) to identify the loci encoding the sexual reproduction-related genes which were investigated to be
used as query sequences. The coding sequences retrieved from the identified loci were then used as
queries for BLASTn (E value cutoff = 1e 23) on the C. graminicola assemblies. The sequences obtained
were aligned to the queries and manually checked for interruption in the translation frame. Finally, we
assessed the presence/absence of these genes in genomes. For this analysis, we used the 13 C. gramini-
cola assemblies generated in this study and the 5 C. graminicola genome assemblies used by Rech et al.
(97) (Tables S1 and S2) (the isolates JAB2 and MAFF511343 were not used for this analysis due to the
low coverage of sequencing). In addition, genome assemblies from nine other fungal species were
included in the analysis: Colletotrichum fiorinae (genome accession no. JARH00000000.1 [146]), C. fructi-
cola (accession no. ANPB00000000.2 [147]), C. gloeosporioides (accession no. AMYD00000000.1 [148]),
C. higginsianum (accession no. LTAN00000000.1 [149]), C. nymphaeae (accession no. JEMN00000000.1
[105]), C. salicis (accession no. JFFI00000000.1 [105]), C. simmondsii (accession no. JFBX00000000.1 [105]),
C. sublineola (accession no. JMSE00000000.1 [150]), C. orbiculare (accession no. AMCV00000000.2 [147]),
and Verticillium dahliae (accession no. ABJE00000000.1 [151]). For all species other than C. graminicola,
BLASTp searches were performed using the proteins encoded by the 96 known sexual reproduction-
related genes as query sequences. BLAST results were inspected manually to determine the presence or
absence of orthologues.

Pathogenicity assays. Pathogenicity assays were performed by in vivo leaf blight assays using a
derivative of the susceptible maize inbred line Mo940 (152). Plants were cultured in a greenhouse
for 2 weeks (V3 developmental stage) and inoculated via C. graminicola spore suspensions (3 �105

spores ml21) according to the methods of Vargas et al. (153). Virulence was quantified by measuring
the area of necrotic lesions on leaves 4 days after inoculation. Symptomatic leaves were excised
from the plants, scanned with a flat-bed scanner, and quantified using the imaging processing soft-
ware Paint.NET v4.2.16 (dotPDN LCC, Seattle, WA, USA) (52), with three biological replicates per iso-
late. An ANOVA with Bonferroni corrections for pairwise comparisons was performed to compare dif-
ferences in virulence among isolates. Twenty-one isolates were assessed, divided into batches
because the pathogenicity assays could not accommodate all isolates simultaneously. Given the
possibility of a batch effect, one of the strains (M1.001) was analyzed in all batches to estimate the
possible systematic differences among them. We compared the isolate repeated in the different
batches using ANOVA with lesion size as the response variable, batch as the predictor variable, and
a null hypothesis of no difference between batches. We obtained highly significant differences
(P , 0.0001), indicating a clear batch effect. Therefore, to eliminate the systematic differences
among batches, we standardized each strain using the mean and standard deviation of the control
(strain M1.001) for its batch. An ANOVA of the corrected data was used to determine the presence of
significant differences among isolates. The second test was to determine whether there were differ-
ences among isolates, after correcting the lesion sizes to account for batch differences. The predic-
tor variable was isolate, the response variable was the corrected lesion size, and the null hypothesis
was no difference in lesion size among the isolates. The ANOVA test was significant (P , 0.0001), so
we performed a Tukey’s comparison-of-means test.

Data availability. The genome assemblies and raw Illumina RAD-seq reads were submitted to
GenBank and their accession numbers are listed in Table S2.
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