49 research outputs found

    Deriving Hourly Evapotranspiration Rates with SEBS: A Lysimetric Evaluation

    Get PDF
    Numerous energy balance (EB) algorithms have been developed to use remote sensing data for mapping evapotranspiration (ET) on a regional basis. Adopting any single or combination of these models for an operational ET remote sensing program requires a thorough evaluation. The Surface Energy Balance System (SEBS) was evaluated for its ability to estimate hourly ET rates of summer tall and short crops grown in the Texas High Plains by using 15 Landsat 5 Thematic Mapper scenes acquired during 2006 to 2009. Performance of SEBS was evaluated by comparing estimated hourly ET values with measured ET data from four large weighing lysimeters, each located at the center of a 4.3 ha field in the USDA-ARS Conservation and Production Research Laboratory in Bushland, TX. The performance of SEBS in estimating hourly ET was good for crops under both irrigated and dryland conditions. A locally derived, surface albedo-based soil heat flux (G) model further improved the G estimates. Root mean square error and mean bias error were 0.11 and −0.005 mm h−1, respectively, and the Nash–Sutcliff model efficiency was 0.85 between the measured and calculated hourly ET. Considering the equal or better performance with a minimal amount of ancillary data as compared to with other EB algorithms, SEBS is a promising tool for use in an operational ET remote sensing program in the semiarid Texas High Plains. However, thorough sensitivity and error propagation analyses of input variables to quantify their impact on ET estimations for the major crops in the Texas High Plains under different agroclimatological conditions are needed before adopting the SEBS into operational ET remote sensing programs for irrigation scheduling or other purposes

    Helicobacter pylori CagA Disrupts Epithelial Patterning by Activating Myosin Light Chain

    Get PDF
    Helicobacter pylori infection is a leading cause of ulcers and gastric cancer. We show that expression of the H. pylori virulence factor CagA in a model Drosophila melanogaster epithelium induces morphological disruptions including ectopic furrowing. We find that CagA alters the distribution and increases the levels of activated myosin regulatory light chain (MLC), a key regulator of epithelial integrity. Reducing MLC activity suppresses CagA-induced disruptions. A CagA mutant lacking EPIYA motifs (CagAEPISA) induces less epithelial disruption and is not targeted to apical foci like wild-type CagA. In a cell culture model in which CagAEPISA and CagA have equivalent subcellular localization, CagAEPISA is equally potent in activating MLC. Therefore, in our transgenic system, CagA is targeted by EPIYA motifs to a specific apical region of the epithelium where it efficiently activates MLC to disrupt epithelial integrity

    Designing an Experiment to Investigate Subpixel Mapping as an Alternative Method to Obtain Land Use/Land Cover Maps

    Get PDF
    Various subpixel mapping (SPM) methods have been proposed as downscaling techniques to reduce uncertainty in classifying mixed pixels. Such methods can provide category maps of a higher spatial resolution than the original input images. The aim of this study was to explore and validate the potential of SPM as an alternative method for obtaining land use/land cover (LULC) maps of regions where high-spatial-resolution LULC maps are unavailable. An experimental design was proposed to evaluate the feasibility of SPM for providing the alternative LULC maps. A case study was implemented in the Jingjinji region of China. SPM results for spatial resolutions of 500–100 m were derived from a single 1-km synthetic fraction image using two representative SPM methods. The 1-km synthetic fraction image was assumed to be error free. Accuracy assessment and analysis showed that overall accuracies of the SPM results were reduced from about 85% to 75% with increasing spatial resolution, and that producer’s accuracies varied considerably from about 62% to 93%. SPM performed best when handling areal features in comparison with linear and point features. The highest accuracies were achieved for areas with the lowest complexity. The study concluded that the results from SPM could provide an alternative LULC data source with acceptable accuracy, especially in areas with low complexity and with a large proportion of areal features
    corecore