259 research outputs found

    A Model-Based Analysis of GC-Biased Gene Conversion in the Human and Chimpanzee Genomes

    Get PDF
    GC-biased gene conversion (gBGC) is a recombination-associated process that favors the fixation of G/C alleles over A/T alleles. In mammals, gBGC is hypothesized to contribute to variation in GC content, rapidly evolving sequences, and the fixation of deleterious mutations, but its prevalence and general functional consequences remain poorly understood. gBGC is difficult to incorporate into models of molecular evolution and so far has primarily been studied using summary statistics from genomic comparisons. Here, we introduce a new probabilistic model that captures the joint effects of natural selection and gBGC on nucleotide substitution patterns, while allowing for correlations along the genome in these effects. We implemented our model in a computer program, called phastBias, that can accurately detect gBGC tracts about 1 kilobase or longer in simulated sequence alignments. When applied to real primate genome sequences, phastBias predicts gBGC tracts that cover roughly 0.3% of the human and chimpanzee genomes and account for 1.2% of human-chimpanzee nucleotide differences. These tracts fall in clusters, particularly in subtelomeric regions; they are enriched for recombination hotspots and fast-evolving sequences; and they display an ongoing fixation preference for G and C alleles. They are also significantly enriched for disease-associated polymorphisms, suggesting that they contribute to the fixation of deleterious alleles. The gBGC tracts provide a unique window into historical recombination processes along the human and chimpanzee lineages. They supply additional evidence of long-term conservation of megabase-scale recombination rates accompanied by rapid turnover of hotspots. Together, these findings shed new light on the evolutionary, functional, and disease implications of gBGC. The phastBias program and our predicted tracts are freely available. © 2013 Capra et al

    Comparison of buccal and blood-derived canine DNA, either native or whole genome amplified, for array-based genome-wide association studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The availability of array-based genotyping platforms for single nucleotide polymorphisms (SNPs) for the canine genome has expanded the opportunities to undertake genome-wide association (GWA) studies to identify the genetic basis for <it>Mendelian </it>and complex traits. Whole blood as the source of high quality DNA is undisputed but often proves impractical for collection of the large numbers of samples necessary to discover the loci underlying complex traits. Further, many countries prohibit the collection of blood from dogs unless medically necessary thereby restricting access to critical control samples from healthy dogs. Alternate sources of DNA, typically from buccal cytobrush extractions, while convenient, have been suggested to have low yield and perform poorly in GWA. Yet buccal cytobrushes provide a cost-effective means of collecting DNA, are readily accepted by dog owners, and represent a large resource base in many canine genetics laboratories. To increase the DNA quantities, whole genome amplification (WGA) can be performed. Thus, the present study assessed the utility of buccal-derived DNA as well as whole genome amplification in comparison to blood samples for use on the most recent iteration of the canine HD SNP array (Illumina).</p> <p>Findings</p> <p>In both buccal and blood samples, whether whole genome amplified or not, 97% of the samples had SNP call rates in excess of 80% indicating that the vast majority of the SNPs would be suitable to perform association studies regardless of the DNA source. Similarly, there were no significant differences in marker intensity measurements between buccal and blood samples for copy number variations (CNV) analysis.</p> <p>Conclusions</p> <p>All DNA samples assayed, buccal or blood, native or whole genome amplified, are appropriate for use in array-based genome-wide association studies. The concordance between subsets of dogs for which both buccal and blood samples, or those samples whole genome amplified, was shown to average >99%. Thus, the two DNA sources were comparable in the generation of SNP genotypes and intensity values to estimate structural variation indicating the utility for the use of buccal cytobrush samples and the reliability of whole genome amplification for genome-wide association and CNV studies.</p

    Association of triglyceride-glucose index with clinical outcomes in patients with acute ischemic stroke receiving intravenous thrombolysis.

    Get PDF
    Intravenous tissue plasminogen activator (tPA) remains the cornerstone of recanalization therapy for acute ischemic stroke (AIS), albeit with varying degrees of response. The triglyceride-glucose (TyG) index is a novel marker of insulin resistance, but association with outcomes among AIS patients who have received tPA has not been well elucidated. We studied 698 patients with AIS who received tPA from 2006 to 2018 in a comprehensive stroke centre. TyG index was calculated using the formula: ln[fasting triglycerides (mg/dL) × fasting glucose (mg/dL)/2]. TyG index was significantly lower in patients that survived at 90-days than those who died (8.61 [Interquartile Range: 8.27-8.99] vs 8.76 [interquartile range: 8.39-9.40], p = 0.007). In multivariate analysis, TyG index was significantly associated with 90-day mortality (OR: 2.12, 95% CI: 1.39-3.23, p = 0.001), poor functional outcome (OR: 1.41 95% CI: 1.05-1.90, p = 0.022), and negatively associated with early neurological improvement (ENI) (OR: 0.68, 95% CI: 0.52-0.89, p = 0.004). There was no association between TyG index and symptomatic intracranial hemorrhage. 'High TyG' (defined by TyG index ≥ 9.15) was associated with mortality, poor functional outcomes and no ENI. In conclusion, the TyG index, a measure of insulin resistance, was significantly associated with poorer clinical outcomes in AIS patients who received tPA

    Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy

    Get PDF
    Background A reliable system for grading operative difficulty of laparoscopic cholecystectomy would standardise description of findings and reporting of outcomes. The aim of this study was to validate a difficulty grading system (Nassar scale), testing its applicability and consistency in two large prospective datasets. Methods Patient and disease-related variables and 30-day outcomes were identified in two prospective cholecystectomy databases: the multi-centre prospective cohort of 8820 patients from the recent CholeS Study and the single-surgeon series containing 4089 patients. Operative data and patient outcomes were correlated with Nassar operative difficultly scale, using Kendall’s tau for dichotomous variables, or Jonckheere–Terpstra tests for continuous variables. A ROC curve analysis was performed, to quantify the predictive accuracy of the scale for each outcome, with continuous outcomes dichotomised, prior to analysis. Results A higher operative difficulty grade was consistently associated with worse outcomes for the patients in both the reference and CholeS cohorts. The median length of stay increased from 0 to 4 days, and the 30-day complication rate from 7.6 to 24.4% as the difficulty grade increased from 1 to 4/5 (both p < 0.001). In the CholeS cohort, a higher difficulty grade was found to be most strongly associated with conversion to open and 30-day mortality (AUROC = 0.903, 0.822, respectively). On multivariable analysis, the Nassar operative difficultly scale was found to be a significant independent predictor of operative duration, conversion to open surgery, 30-day complications and 30-day reintervention (all p < 0.001). Conclusion We have shown that an operative difficulty scale can standardise the description of operative findings by multiple grades of surgeons to facilitate audit, training assessment and research. It provides a tool for reporting operative findings, disease severity and technical difficulty and can be utilised in future research to reliably compare outcomes according to case mix and intra-operative difficulty

    Mother Knows Best: Dominant Females Determine Offspring Dispersal in Red Foxes (Vulpes vulpes)

    Get PDF
    Background: Relatedness between group members is central to understanding the causes of animal dispersal. In many group-living mammals this can be complicated as extra-pair copulations result in offspring having varying levels of relatedness to the dominant animals, leading to a potential conflict between male and female dominants over offspring dispersal strategies. To avoid resource competition and inbreeding, dominant males might be expected to evict unrelated males and related females, whereas the reverse strategy would be expected for dominant females. Methodology/Principal Findings: We used microsatellites and long-term data from an urban fox (Vulpes vulpes) population to compare dispersal strategies between offspring with intra- and extra-group fathers and mothers of differing social status in red foxes. Relatedness to the dominant male had no effect on dispersal in offspring of either sex, whereas there was a strong effect of relatedness to resident females on offspring dispersal independent of population density. Males with dominant mothers dispersed significantly more often than males with subordinate mothers, whereas dispersing females were significantly more likely to have subordinate mothers compared to philopatric females. Conclusions/Significance: This is the first study to demonstrate that relatedness to resident females is important in juvenile dispersal in group-living mammals. Male dispersal may be driven by inbreeding avoidance, whereas female dispersal appears to be influenced by the fitness advantages associated with residing with the same-sex dominant parent. Selection pressure for paternal influence on offspring dispersal is low due to the limited costs associated with retaining unrelated males and the need for alternative inbreeding avoidance mechanisms between the dominant male and his female offspring. These findings have important implications for the evolution of dispersal and group living in social mammals, and our understanding of a key biological process.peerReviewe

    SOD2 immunoexpression predicts lymph node metastasis in penile cancer

    Get PDF
    BACKGROUND: Superoxide dismutase-2 (SOD2) is considered one of the most important antioxidant enzymes that regulate cellular redox state in normal and tumorigenic cells. Overexpression of this enzyme in lung, gastric, colorectal, breast cancer and cervical cancer malignant tumors has been observed. Its relationship with inguinal lymph node metastasis in penile cancer is unknown. METHODS: SOD2 protein expression levels were determined by immunohistochemistry in 125 usual type squamous cell carcinomas of the penis from a Brazilian cancer center. The casuistic has been characterized by means of descriptive statistics. An exploratory logistic regression has been proposed to evaluate the independent predictive factors of lymph node metastasis. RESULTS: SOD2 expression in more than 50% of cells was observed in 44.8% of primary penile carcinomas of the usual type. This expression pattern was associated with lymph node metastasis both in the uni and multivariate analysis. CONCLUSIONS: Our results indicate that SOD2 expression predicts regional lymph node metastasis. The potential clinical implication of this observation warrants further studies.Dr. Lara Termini (FAPESP 2005/57274-9); Dr. Luisa Lina Villa (FAPESP 2008/57889-1 and CNPq 573799/2008-3)

    3D genomics across the tree of life reveals condensin II as a determinant of architecture type

    Get PDF
    We investigated genome folding across the eukaryotic tree of life. We find two types of three-dimensional(3D) genome architectures at the chromosome scale. Each type appears and disappears repeatedlyduring eukaryotic evolution. The type of genome architecture that an organism exhibits correlates with theabsence of condensin II subunits. Moreover, condensin II depletion converts the architecture of thehuman genome to a state resembling that seen in organisms such as fungi or mosquitoes. In this state,centromeres cluster together at nucleoli, and heterochromatin domains merge. We propose a physicalmodel in which lengthwise compaction of chromosomes by condensin II during mitosis determineschromosome-scale genome architecture, with effects that are retained during the subsequent interphase.This mechanism likely has been conserved since the last common ancestor of all eukaryotes.C.H. is supported by the Boehringer Ingelheim Fonds; C.H., Á.S.C., and B.D.R. are supported by an ERC CoG (772471, “CohesinLooping”); A.M.O.E. and B.D.R. are supported by the Dutch Research Council (NWO-Echo); and J.A.R. and R.H.M. are supported by the Dutch Cancer Society (KWF). T.v.S. and B.v.S. are supported by NIH Common Fund “4D Nucleome” Program grant U54DK107965. H.T. and E.d.W. are supported by an ERC StG (637597, “HAP-PHEN”). J.A.R., T.v.S., H.T., R.H.M., B.v.S., and E.d.W. are part of the Oncode Institute, which is partly financed by the Dutch Cancer Society. Work at the Center for Theoretical Biological Physics is sponsored by the NSF (grants PHY-2019745 and CHE-1614101) and by the Welch Foundation (grant C-1792). V.G.C. is funded by FAPESP (São Paulo State Research Foundation and Higher Education Personnel) grants 2016/13998-8 and 2017/09662-7. J.N.O. is a CPRIT Scholar in Cancer Research. E.L.A. was supported by an NSF Physics Frontiers Center Award (PHY-2019745), the Welch Foundation (Q-1866), a USDA Agriculture and Food Research Initiative grant (2017-05741), the Behavioral Plasticity Research Institute (NSF DBI-2021795), and an NIH Encyclopedia of DNA Elements Mapping Center Award (UM1HG009375). Hi-C data for the 24 species were created by the DNA Zoo Consortium (www.dnazoo.org). DNA Zoo is supported by Illumina, Inc.; IBM; and the Pawsey Supercomputing Center. P.K. is supported by the University of Western Australia. L.L.M. was supported by NIH (1R01NS114491) and NSF awards (1557923, 1548121, and 1645219) and the Human Frontiers Science Program (RGP0060/2017). The draft A. californica project was supported by NHGRI. J.L.G.-S. received funding from the ERC (grant agreement no. 740041), the Spanish Ministerio de Economía y Competitividad (grant no. BFU2016-74961-P), and the institutional grant Unidad de Excelencia María de Maeztu (MDM-2016-0687). R.D.K. is supported by NIH grant RO1DK121366. V.H. is supported by NIH grant NIH1P41HD071837. K.M. is supported by a MEXT grant (20H05936). M.C.W. is supported by the NIH grants R01AG045183, R01AT009050, R01AG062257, and DP1DK113644 and by the Welch Foundation. E.F. was supported by NHGR

    Susceptibility and Response of Human Blood Monocyte Subsets to Primary Dengue Virus Infection

    Get PDF
    Human blood monocytes play a central role in dengue infections and form the majority of virus infected cells in the blood. Human blood monocytes are heterogeneous and divided into CD16− and CD16+ subsets. Monocyte subsets play distinct roles during disease, but it is not currently known if monocyte subsets differentially contribute to dengue protection and pathogenesis. Here, we compared the susceptibility and response of the human CD16− and CD16+ blood monocyte subsets to primary dengue virus in vitro. We found that both monocyte subsets were equally susceptible to dengue virus (DENV2 NGC), and capable of supporting the initial production of new infective virus particles. Both monocyte subsets produced anti-viral factors, including IFN-α, CXCL10 and TRAIL. However, CD16+ monocytes were the major producers of inflammatory cytokines and chemokines in response to dengue virus, including IL-1β, TNF-α, IL-6, CCL2, 3 and 4. The susceptibility of both monocyte subsets to infection was increased after IL-4 treatment, but this increase was more profound for the CD16+ monocyte subset, particularly at early time points after virus exposure. These findings reveal the differential role that monocyte subsets might play during dengue disease
    corecore