71 research outputs found
Spitzer Observations of Interstellar Object 1I/`Oumuamua
1I/`Oumuamua is the first confirmed interstellar body in our Solar System.
Here we report on observations of `Oumuamua made with the Spitzer Space
Telescope on 2017 November 21--22 (UT). We integrated for 30.2~hours at 4.5
micron (IRAC channel 2). We did not detect the object and place an upper limit
on the flux of 0.3 uJy (3sigma). This implies an effective spherical diameter
less than [98, 140, 440] meters and albedo greater than [0.2, 0.1, 0.01] under
the assumption of low, middle, or high thermal beaming parameter eta,
respectively. With an aspect ratio for `Oumuamua of 6:1, these results
correspond to dimensions of [240:40, 341:57, 1080:180] meters, respectively. We
place upper limits on the amount of dust, CO, and CO2 coming from this object
that are lower than previous results; we are unable to constrain the production
of other gas species. Both our size and outgassing limits are important because
`Oumuamua's trajectory shows non-gravitational accelerations that are sensitive
to size and mass and presumably caused by gas emission. We suggest that
`Oumuamua may have experienced low-level post-perihelion volatile emission that
produced a fresh, bright, icy mantle. This model is consistent with the
expected eta value and implied high albedo value for this solution, but, given
our strict limits on CO and CO2, requires another gas species --- probably H2O
--- to explain the observed non-gravitational acceleration. Our results extend
the mystery of `Oumuamua's origin and evolution
Life-History Evolution on Tropidurinae Lizards: Influence of Lineage, Body Size and Climate
The study of life history variation is central to the evolutionary theory. In many ectothermic lineages, including lizards, life history traits are plastic and relate to several sources of variation including body size, which is both a factor and a life history trait likely to modulate reproductive parameters. Larger species within a lineage, for example tend to be more fecund and have larger clutch size, but clutch size may also be influenced by climate, independently of body size. Thus, the study of climatic effects on lizard fecundity is mandatory on the current scenario of global climatic change. We asked how body and clutch size have responded to climate through time in a group of tropical lizards, the Tropidurinae, and how these two variables relate to each other. We used both traditional and phylogenetic comparative methods. Body and clutch size are variable within Tropidurinae, and both traits are influenced by phylogenetic position. Across the lineage, species which evolved larger size produce more eggs and neither trait is influenced by temperature components. A climatic component of precipitation, however, relates to larger female body size, and therefore seems to exert an indirect relationship on clutch size. This effect of precipitation on body size is likely a correlate of primary production. A decrease in fecundity is expected for Tropidurinae species on continental landmasses, which are predicted to undergo a decrease in summer rainfall
Long-term decline of the Amazon carbon sink
Atmospheric carbon dioxide records indicate that the land surface has acted as a strong global carbon sink over recent decades1, 2, with a substantial fraction of this sink probably located in the tropics3, particularly in the Amazon4. Nevertheless, it is unclear how the terrestrial carbon sink will evolve as climate and atmospheric composition continue to change. Here we analyse the historical evolution of the biomass dynamics of the Amazon rainforest over three decades using a distributed network of 321 plots. While this analysis confirms that Amazon forests have acted as a long-term net biomass sink, we find a long-term decreasing trend of carbon accumulation. Rates of net increase in above-ground biomass declined by one-third during the past decade compared to the 1990s. This is a consequence of growth rate increases levelling off recently, while biomass mortality persistently increased throughout, leading to a shortening of carbon residence times. Potential drivers for the mortality increase include greater climate variability, and feedbacks of faster growth on mortality, resulting in shortened tree longevity5. The observed decline of the Amazon sink diverges markedly from the recent increase in terrestrial carbon uptake at the global scale1, 2, and is contrary to expectations based on models6
- …