328 research outputs found

    Magnetic resonance imaging of placentome development in the pregnant Ewe

    Get PDF
    INTRODUCTION: Novel imaging measurements of placental development are difficult to validate due to the invasive nature of gold-standard procedures. Animal studies have been important in validation of magnetic resonance imaging (MRI) measurements in invasive preclinical studies, as they allow for controlled experiments and analysis of multiple time-points during pregnancy. This study characterises the longitudinal diffusion and perfusion properties of sheep placentomes using MRI, measurements that are required for future validation studies. METHODS: Pregnant ewes were anaesthetised for a MRI session on a 3T scanner. Placental MRI was used to classify placentomes morphologically into three types based on their shape and size at two gestational ages. To validate classification accuracy, placentome type derived from MRI data were compared with placentome categorisation results after delivery. Diffusion-Weighted MRI and T2-relaxometry were used to measure a broad range of biophysical properties of the placentomes. RESULTS: MRI morphological classification results showed consistent gestational age changes in placentome shape, as supported by post-delivery gold standard data. The mean apparent diffusion coefficient was significantly higher at 110 days gestation than at late gestation (~140 days; term, 150 days). Mean T2 was higher at mid gestation (152.2 ± 58.1 ms) compared to late gestation (127.8 ms ± 52.0). Significantly higher perfusion fraction was measured in late gestation placentomes that also had a significantly higher fractional anisotropy when compared to the earlier gestational age. DISCUSSION: We report baseline measurements of techniques common in placental MRI for the sheep placenta. These measurements are essential to support future validation measurements of placental MRI techniques

    Axion Protection from Flavor

    Get PDF
    The QCD axion fails to solve the strong CP problem unless all explicit PQ violating, Planck-suppressed, dimension n<10 operators are forbidden or have exponentially small coefficients. We show that all theories with a QCD axion contain an irreducible source of explicit PQ violation which is proportional to the determinant of the Yukawa interaction matrix of colored fermions. Generically, this contribution is of low operator dimension and will drastically destabilize the axion potential, so its suppression is a necessary condition for solving the strong CP problem. We propose a mechanism whereby the PQ symmetry is kept exact up to n=12 with the help of the very same flavor symmetries which generate the hierarchical quark masses and mixings of the SM. This "axion flavor protection" is straightforwardly realized in theories which employ radiative fermion mass generation and grand unification. A universal feature of this construction is that the heavy quark Yukawa couplings are generated at the PQ breaking scale.Comment: 16 pages, 2 figure

    Antecedents of hospital admission for deliberate self-harm from a 14-year follow-up study using data-linkage

    Get PDF
    Antecedents of hospital admission for deliberate self-harm from a 14-year follow-up study using data-linkageFrancis Mitrou1 email, Jennifer Gaudie1 email, David Lawrence1,2 email, Sven R Silburn1,2 email, Fiona J Stanley1 email and Stephen R Zubrick1,2 email1 Telethon Institute for Child Health Research, Centre for Child Health Research, The University of Western Australia. PO Box 855, West Perth, WA. 6872, Australia2 Centre for Developmental Health, Curtin Health Innovation Research Institute, Curtin University of Technology, Perth, Western Australia, Australiaauthor email corresponding author emailBMC Psychiatry 2010, 10:82doi:10.1186/1471-244X-10-82The electronic version of this article is the complete one and can be found online at: http://www.biomedcentral.com/1471-244X/10/82Received: 22 April 2010Accepted: 18 October 2010Published: 18 October 2010© 2010 Mitrou et al; licensee BioMed Central Ltd.This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    String theoretic QCD axions in the light of PLANCK and BICEP2

    Get PDF
    The QCD axion solving the strong CP problem may originate from antisymmetric tensor gauge fields in compactified string theory, with a decay constant around the GUT scale. Such possibility appears to be ruled out now by the detection of tensor modes by BICEP2 and the PLANCK constraints on isocurvature density perturbations. A more interesting and still viable possibility is that the string theoretic QCD axion is charged under an anomalous U(1)_A gauge symmetry. In such case, the axion decay constant can be much lower than the GUT scale if moduli are stabilized near the point of vanishing Fayet-Illiopoulos term, and U(1)_A-charged matter fields get a vacuum value far below the GUT scale due to a tachyonic SUSY breaking scalar mass. We examine the symmetry breaking pattern of such models during the inflationary epoch with the Hubble expansion rate 10^{14} GeV, and identify the range of the QCD axion decay constant, as well as the corresponding relic axion abundance, consistent with known cosmological constraints. In addition to the case that the PQ symmetry is restored during inflation, there are other viable scenarios, including that the PQ symmetry is broken during inflation at high scales around 10^{16}-10^{17} GeV due to a large Hubble-induced tachyonic scalar mass from the U(1)_A D-term, while the present axion scale is in the range 10^{9}-5\times 10^{13} GeV, where the present value larger than 10^{12} GeV requires a fine-tuning of the axion misalignment angle. We also discuss the implications of our results for the size of SUSY breaking soft masses.Comment: 29 pages, 1 figure; v3: analysis updated including the full anharmonic effects, references added, version accepted for publication in JHE

    Clostridium difficile Infections amongst Patients with Haematological Malignancies: A Data Linkage Study

    Get PDF
    OBJECTIVES: Identify risk factors for Clostridium difficile infection (CDI) and assess CDI outcomes among Australian patients with a haematological malignancy. METHODS: A retrospective cohort study involving all patients admitted to hospitals in Western Australia with a haematological malignancy from July 2011 to June 2012. Hospital admission data were linked with all hospital investigated CDI case data. Potential risk factors were assessed by logistic regression. The risk of death within 60 and 90 days of CDI was assessed by Cox Proportional Hazards regression. RESULTS: There were 2085 patients of whom 65 had at least one CDI. Twenty percent of CDI cases were either community-acquired, indeterminate source or had only single-day admissions in the 28 days prior to CDI. Using logistic regression, having acute lymphocytic leukaemia, neutropenia and having had bacterial pneumonia or another bacterial infection were associated with CDI. CDI was associated with an increased risk of death within 60 and 90 days post CDI, but only two deaths had CDI recorded as an antecedent factor. Ribotyping information was available for 33 of the 65 CDIs. There were 19 different ribotypes identified. CONCLUSIONS: Neutropenia was strongly associated with CDI. While having CDI is a risk factor for death, in many cases it may not be a direct contributor to death but may reflect patients having higher morbidity. A wide variety of C. difficile ribotypes were found and community-acquired infection may be under-estimated in these patients

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio
    corecore