20 research outputs found

    Modeling the Total Allowable Area for Coastal Reclamation : a case study of Xiamen, China

    Get PDF
    Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Ocean & Coastal Management 76 (2013):38-44, doi:10.1016/j.ocecoaman.2013.02.015.This paper presents an analytical framework to estimate the Total Allowable Area for Coastal Reclamation (TAACR) to provide scientific support for the implementation of a coastal reclamation restriction mechanism. The logic of the framework is to maximize the net benefits of coastal reclamation subject to a set of constraints. Various benefits and costs, including the ecological and environmental costs of coastal reclamation, are systematically quantified in the framework. Model simulations are developed using data from Tongan Bay of Xiamen. The results suggest that the TAACR in Tongan Bay is 5.67 km2, and the area of the Bay should be maintained at least at 87.52 km2.The study was funded by the National Oceanic Public Welfare Projects (No. 201105006) and the Fujian Natural Science Foundation (No. 2010J01360

    Assessment of coastal management options by means of multilayered ecosystem models

    Get PDF
    This paper presents a multilayered ecosystem modelling approach that combines the simulation of the biogeochemistry of a coastal ecosystem with the simulation of the main forcing functions, such as catchment loading and aquaculture activities. This approach was developed as a tool for sustainable management of coastal ecosystems. A key feature is to simulate management scenarios that account for changes in multiple uses and enable assessment of cumulative impacts of coastal activities. The model was applied to a coastal zone in China with large aquaculture production and multiple catchment uses, and where management efforts to improve water quality are under way. Development scenarios designed in conjunction with local managers and aquaculture producers include the reduction of fish cages and treatment of wastewater. Despite the reduction in nutrient loading simulated in three different scenarios, inorganic nutrient concentrations in the bay were predicted to exceed the thresholds for poor quality defined by Chinese seawater quality legislation. For all scenarios there is still a Moderate High to High nutrient loading from the catchment, so further reductions might be enacted, together with additional decreases in fish cage culture. The model predicts that overall, shellfish production decreases by 10%–28% using any of these development scenarios, principally because shellfish growth is being sustained by the substances to be reduced for improvement of water quality. The model outcomes indicate that this may be counteracted by zoning of shellfish aquaculture at the ecosystem level in order to optimize trade-offs between productivity and environmental effects. The present case study exemplifies the value of multilayered ecosystem modelling as a tool for Integrated Coastal Zone Management and for the adoption of ecosystem approaches for marine resource management. This modelling approach can be applied worldwide, and may be particularly useful for the application of coastal management regulation, for instance in the implementation of the European Marine Strategy Framework Directive

    Long-term Trend of \u3cem\u3eUlva prolifera\u3c/em\u3e Blooms in the Western Yellow Sea

    No full text
    Blooms of the green macroalga Ulva prolifera in the western Yellow Sea occurred every year since 2008, and they have been reported and studied extensively using a variety of means including remote sensing. However, to date, long-term bloom patterns have not been reported except for a few case studies showing examples in different years. Here, using MODIS observations and an objective method to perform statistical analysis, mean Ulva coverage in the western Yellow Sea has been derived and analyzed between 2007 and 2015 at both monthly and annual scales. On annual scale, mean Ulva coverage decreased after 2008, but increased rapidly after 2012 from 8 km2 in 2012 to 116 km2 in 2015 (the largest ever reported in history for this region). In the month of June the mean coverage increased from 18 km2 in 2012 to 363 km2 in 2015. Other than 2009 and 2010, the month of June showed maximum Ulva coverage in every year. These coverage estimates are significantly lower than previously reported values as they represent “pure” algae coverage after taking into account of partial pixel coverage. Several environmental factors were examined in an attempt to determine the reasons behind such long-term changes, yet the results are inconclusive, suggesting a strong necessity of further coordinated and multi-disciplinary researches
    corecore