126 research outputs found

    The role of TcdB and TccC subunits in secretion of the photorhabdus Tcd toxin complex

    Get PDF
    The Toxin Complex (TC) is a large multi-subunit toxin encoded by a range of bacterial pathogens. The best-characterized examples are from the insect pathogens Photorhabdus, Xenorhabdus and Yersinia. They consist of three large protein subunits, designated A, B and C that assemble in a 5:1:1 stoichiometry. Oral toxicity to a range of insects means that some have the potential to be developed as pest control technology. The three subunit proteins do not encode any recognisable export sequences and as such little progress has been made in understanding their secretion. We have developed heterologous TC production and secretion models in E. coli and used them to ascribe functions to different domains of the crucial B+C sub-complex. We have determined that the B and C subunits use a secretion mechanism that is either encoded by the proteins themselves or employ an as yet undefined system common to laboratory strains of E. coli. We demonstrate that both the N-terminal domains of the B and C subunits are required for secretion of the whole complex. We propose a model whereby the N-terminus of the C-subunit toxin exports the B+C sub-complex across the inner membrane while that of the B-subunit allows passage across the outer membrane. We also demonstrate that even in the absence of the B-subunit, that the C-subunit can also facilitate secretion of the larger A-subunit. The recognition of this novel export system is likely to be of importance to future protein secretion studies. Finally, the identification of homologues of B and C subunits in diverse bacterial pathogens, including Burkholderia and Pseudomonas, suggests that these toxins are likely to be important in a range of different hosts, including man

    Study protocol: an early intervention program to improve motor outcome in preterm infants: a randomized controlled trial and a qualitative study of physiotherapy performance and parental experiences

    Get PDF
    Background Knowledge about early physiotherapy to preterm infants is sparse, given the risk of delayed motor development and cerebral palsy. Methods/Design A pragmatic randomized controlled study has been designed to assess the effect of a preventative physiotherapy program carried out in the neonatal intensive care unit. Moreover, a qualitative study is carried out to assess the physiotherapy performance and parents' experiences with the intervention. The aim of the physiotherapy program is to improve motor development i.e. postural control and selective movements in these infants. 150 infants will be included and randomized to either intervention or standard follow-up. The infants in the intervention group will be given specific stimulation to facilitate movements based on the individual infant's development, behavior and needs. The physiotherapist teaches the parents how to do the intervention and the parents receive a booklet with photos and descriptions of the intervention. Intervention is carried out twice a day for three weeks (week 34, 35, 36 postmenstrual age). Standardized tests are carried out at baseline, term age and at three, six, 12 and 24 months corrected age. In addition eight triads (infant, parent and physiotherapist) are observed and videotaped in four clinical encounters each to assess the process of physiotherapy performance. The parents are also interviewed on their experiences with the intervention and how it influences on the parent-child relationship. Eight parents from the follow up group are interviewed about their experience. The interviews are performed according to the same schedule as the standardized measurements. Primary outcome is at two years corrected age. Discussion The paper presents the protocol for a randomized controlled trial designed to study the effect of physiotherapy to preterm infants at neonatal intensive care units. It also studies physiotherapy performance and the parent's experiences with the intervention

    Zebrafish as a new model to study effects of periodontal pathogens on cardiovascular diseases.

    Get PDF
    Porphyromonas gingivalis (Pg) is a keystone pathogen in the aetiology of chronic periodontitis. However, recent evidence suggests that the bacterium is also able to enter the bloodstream, interact with host cells and tissues, and ultimately contribute to the pathogenesis of cardiovascular disease (CVD). Here we established a novel zebrafish larvae systemic infection model showing that Pg rapidly adheres to and penetrates the zebrafish vascular endothelium causing a dose- and time-dependent mortality with associated development of pericardial oedemas and cardiac damage. The in vivo model was then used to probe the role of Pg expressed gingipain proteases using systemically delivered gingipain-deficient Pg mutants, which displayed significantly reduced zebrafish morbidity and mortality compared to wild-type bacteria. In addition, we used the zebrafish model to show efficacy of a gingipain inhibitor (KYT) on Pg-mediated systemic disease, suggesting its potential use therapeutically. Our data reveal the first real-time in vivo evidence of intracellular Pg within the endothelium of an infection model and establishes that gingipains are crucially linked to systemic disease and potentially contribute to CVD

    Dimethyl sulfide production: what is the contribution of the coccolithophores?

    Get PDF

    Pdl1 Is a Putative Lipase that Enhances Photorhabdus Toxin Complex Secretion

    Get PDF
    The Toxin Complex (TC) is a large multi-subunit toxin first characterized in the insect pathogens Photorhabdus and Xenorhabdus, but now seen in a range of pathogens, including those of humans. These complexes comprise three protein subunits, A, B and C which in the Xenorhabdus toxin are found in a 4∢1∢1 stoichiometry. Some TCs have been demonstrated to exhibit oral toxicity to insects and have the potential to be developed as a pest control technology. The lack of recognisable signal sequences in the three large component proteins hinders an understanding of their mode of secretion. Nevertheless, we have shown the Photorhabdus luminescens (Pl) Tcd complex has been shown to associate with the bacteria's surface, although some strains can also release it into the surrounding milieu. The large number of tc gene homologues in Pl make study of the export process difficult and as such we have developed and validated a heterologous Escherichia coli expression model to study the release of these important toxins. In addition to this model, we have used comparative genomics between a strain that releases high levels of Tcd into the supernatant and one that retains the toxin on its surface, to identify a protein responsible for enhancing secretion and release of these toxins. This protein is a putative lipase (Pdl1) which is regulated by a small tightly linked antagonist protein (Orf53). The identification of homologues of these in other bacteria, linked to other virulence factor operons, such as type VI secretion systems, suggests that these genes represent a general and widespread mechanism for enhancing toxin release in Gram negative pathogens

    Acute Human Self-Poisoning with Imidacloprid Compound: A Neonicotinoid Insecticide

    Get PDF
    Background: Deliberate self-poisoning with older pesticides such as organophosphorus compounds are commonly fatal and a serious public health problem in the developing world. The clinical consequences of self-poisoning with newer pesticides are not well described. Such information may help to improve clinical management and inform pesticide regulators of their relative toxicity. This study reports the clinical outcomes and toxicokinetics of the neonicotinoid insecticide imidacloprid following acute self-poisoning in humans. Methodology/Principal Findings: Demographic and clinical data were prospectively recorded in patients with imidacloprid exposure in three hospitals in Sri Lanka. Blood samples were collected when possible for quantification of imidacloprid concentration. There were 68 patients (61 self-ingestions and 7 dermal exposures) with exposure to imidacloprid. Of the self-poisoning patients, the median time to presentation was 4 hours (IQR 2.3–6.0) and median amount ingested was 15 mL (IQR 10–50 mL). Most patients only developed mild symptoms such as nausea, vomiting, headache and diarrhoea. One patient developed respiratory failure needing mechanical ventilation while another was admitted to intensive care due to prolonged sedation. There were no deaths. Median admission imidacloprid concentration was 10.58 ng/L; IQR: 3.84–15.58 ng/L, Range: 0.02–51.25 ng/L. Changes in the concentration of imidacloprid in serial blood samples were consistent with prolonged absorption and/or saturable elimination. Conclusions: Imidacloprid generally demonstrates low human lethality even in large ingestions. Respiratory failure and reduced level of consciousness were the most serious complications, but these were uncommon. Substitution of imidacloprid for organophosphorus compounds in areas where the incidence of self-poisoning is high may help reduce deaths from self-poisoning

    Defects in ErbB-Dependent Establishment of Adult Melanocyte Stem Cells Reveal Independent Origins for Embryonic and Regeneration Melanocytes

    Get PDF
    Adult stem cells are responsible for maintaining and repairing tissues during the life of an organism. Tissue repair in humans, however, is limited compared to the regenerative capabilities of other vertebrates, such as the zebrafish (Danio rerio). An understanding of stem cell mechanisms, such as how they are established, their self-renewal properties, and their recruitment to produce new cells is therefore important for the application of regenerative medicine. We use larval melanocyte regeneration following treatment with the melanocytotoxic drug MoTP to investigate these mechanisms in Melanocyte Stem Cell (MSC) regulation. In this paper, we show that the receptor tyrosine kinase, erbb3b, is required for establishing the adult MSC responsible for regenerating the larval melanocyte population. Both the erbb3b mutant and wild-type fish treated with the ErbB inhibitor, AG1478, develop normal embryonic melanocytes but fail to regenerate melanocytes after MoTP-induced melanocyte ablation. By administering AG1478 at different time points, we show that ErbB signaling is only required for regeneration prior to MoTP treatment and before 48 hours of development, consistent with a role in establishing MSCs. We then show that overexpression of kitla, the Kit ligand, in transgenic larvae leads to recruitment of MSCs, resulting in overproliferation of melanocytes. Furthermore, kitla overexpression can rescue AG1478-blocked regeneration, suggesting that ErbB signaling is required to promote the progression and specification of the MSC from a pre–MSC state. This study provides evidence that ErbB signaling is required for the establishment of adult MSCs during embryonic development. That this requirement is not shared with the embryonic melanocytes suggests that embryonic melanocytes develop directly, without proceeding through the ErbB-dependent MSC. Moreover, the shared requirement of larval melanocyte regeneration and metamorphic melanocytes that develops at the larval-to-adult transition suggests that these post-embryonic melanocytes develop from the same adult MSC population. Lastly, that kitla overexpression can recruit the MSC to develop excess melanocytes raises the possibility that Kit signaling may be involved in MSC recruitment during regeneration

    Pathogen-Mediated Proteolysis of the Cell Death Regulator RIPK1 and the Host Defense Modulator RIPK2 in Human Aortic Endothelial Cells

    Get PDF
    Porphyromonas gingivalis is the primary etiologic agent of periodontal disease that is associated with other human chronic inflammatory diseases, including atherosclerosis. The ability of P. gingivalis to invade and persist within human aortic endothelial cells (HAEC) has been postulated to contribute to a low to moderate chronic state of inflammation, although how this is specifically achieved has not been well defined. In this study, we demonstrate that P. gingivalis infection of HAEC resulted in the rapid cleavage of receptor interacting protein 1 (RIPK1), a mediator of tumor necrosis factor (TNF) receptor-1 (TNF-R1)-induced cell activation or death, and RIPK2, a key mediator of both innate immune signaling and adaptive immunity. The cleavage of RIPK1 or RIPK2 was not observed in cells treated with apoptotic stimuli, or cells stimulated with agonists to TNF-R1, nucleotide oligomerization domain receptor 1(NOD1), NOD2, Toll-like receptor 2 (TLR2) or TLR4. P. gingivalis-induced cleavage of RIPK1 and RIPK2 was inhibited in the presence of a lysine-specific gingipain (Kgp) inhibitor. RIPK1 and RIPK2 cleavage was not observed in HAEC treated with an isogenic mutant deficient in the lysine-specific gingipain, confirming a role for Kgp in the cleavage of RIPK1 and RIPK2. Similar proteolysis of poly (ADP-ribose) polymerase (PARP) was observed. We also demonstrated direct proteolysis of RIPK2 by P. gingivalis in a cell-free system which was abrogated in the presence of a Kgp-specific protease inhibitor. Our studies thus reveal an important role for pathogen-mediated modification of cellular kinases as a potential strategy for bacterial persistence within target host cells, which is associated with low-grade chronic inflammation, a hallmark of pathogen-mediated chronic inflammatory disorders

    Porphyromonas gingivalis gingipains cause defective macrophage migration towards apoptotic cells and inhibit phagocytosis of primary apoptotic neutrophils:gingipains, apoptotic cell removal & inflammation

    Get PDF
    Periodontal disease is a prevalent chronic inflammatory condition characterised by an aberrant host response to a pathogenic plaque biofilm resulting in local tissue damage and frustrated healing that can result in tooth loss. Cysteine proteases (gingipains) from the key periodontal pathogen Porphyromonas gingivalis have been implicated in periodontal disease pathogenesis by inhibiting inflammation resolution and are linked with systemic chronic inflammatory conditions such as rheumatoid arthritis. Efficient clearance of apoptotic cells is essential for the resolution of inflammation and tissue restoration. Here we sought to characterise the innate immune clearance of apoptotic cells and its modulation by gingipains. We examined the capacity of gingipain-treated macrophages to migrate towards and phagocytose apoptotic cells. Lysine gingipain treatment of macrophages impaired macrophage migration towards apoptotic neutrophils. Furthermore, lysine gingipain treatment reduced surface expression levels of CD14, a key macrophage receptor for apoptotic cells, which resulted in reduced macrophage interactions with apoptotic cells. Additionally, whilst apoptotic cells and their derived secretome were shown to inhibit TNF-Ξ± induced expression by P.gingivalis LPS, we demonstrated that gingipain preparations induced a rapid inflammatory response in macrophages that was resistant to the anti-inflammatory effects of apoptotic cells or their secretome. Taken together these data indicate that P.gingivalis may promote the chronic inflammation seen in periodontal disease patients by multiple mechanisms including rapid, potent gingipain-mediated inflammation coupled with receptor cleavage leading to defective clearance of apoptotic cells and reduced anti-inflammatory responses. Thus gingipains represent a potential therapeutic target for intervention in the management of chronic periodontal disease

    Genetic Transformation of an Obligate Anaerobe, P. gingivalis for FMN-Green Fluorescent Protein Expression in Studying Host-Microbe Interaction

    Get PDF
    The recent introduction of β€œoxygen-independent” flavin mononucleotide (FMN)-based fluorescent proteins (FbFPs) is of major interest to both eukaryotic and prokaryotic microbial biologists. Accordingly, we demonstrate for the first time that an obligate anaerobe, the successful opportunistic pathogen of the oral cavity, Porphyromonas gingivalis, can be genetically engineered for expression of the non-toxic green FbFP. The resulting transformants are functional for studying dynamic bacterial processes in living host cells. The visualization of the transformed P. gingivalis (PgFbFP) revealed strong fluorescence that reached a maximum emission at 495 nm as determined by fluorescence microscopy and spectrofluorometry. Human primary gingival epithelial cells (GECs) were infected with PgFbFP and the bacterial invasion of host cells was analyzed by a quantitative fluorescence microscopy and antibiotic protection assays. The results showed similar levels of intracellular bacteria for both wild type and PgFbFP strains. In conjunction with organelle specific fluorescent dyes, utilization of the transformed strain provided direct and accurate determination of the live/metabolically active P. gingivalis' trafficking in the GECs over time. Furthermore, the GECs were co-infected with PgFbFP and the ATP-dependent Clp serine protease-deficient mutant (ClpP-) to study the differential fates of the two strains within the same host cells. Quantitative co-localization analyses displayed the intracellular PgFbFP significantly associated with the endoplasmic reticulum network, whereas the majority of ClpP- organisms trafficked into the lysosomes. Hence, we have developed a novel and reliable method to characterize live host cell-microbe interactions and demonstrated the adaptability of FMN-green fluorescent protein for studying persistent host infections induced by obligate anaerobic organisms
    • …
    corecore