52 research outputs found

    Modelling entomological-climatic interactions of Plasmodium falciparum malaria transmission in two Colombian endemic-regions: contributions to a National Malaria Early Warning System

    Get PDF
    BACKGROUND: Malaria has recently re-emerged as a public health burden in Colombia. Although the problem seems to be climate-driven, there remain significant gaps of knowledge in the understanding of the complexity of malaria transmission, which have motivated attempts to develop a comprehensive model. METHODS: The mathematical tool was applied to represent Plasmodium falciparum malaria transmission in two endemic-areas. Entomological exogenous variables were estimated through field campaigns and laboratory experiments. Availability of breeding places was included towards representing fluctuations in vector densities. Diverse scenarios, sensitivity analyses and instabilities cases were considered during experimentation-validation process. RESULTS: Correlation coefficients and mean square errors between observed and modelled incidences reached 0.897–0.668 (P > 0.95) and 0.0002–0.0005, respectively. Temperature became the most relevant climatic parameter driving the final incidence. Accordingly, malaria outbreaks are possible during the favourable epochs following the onset of El Niño warm events. Sporogonic and gonotrophic cycles showed to be the entomological key-variables controlling the transmission potential of mosquitoes' population. Simulation results also showed that seasonality of vector density becomes an important factor towards understanding disease transmission. CONCLUSION: The model constitutes a promising tool to deepen the understanding of the multiple interactions related to malaria transmission conducive to outbreaks. In the foreseeable future it could be implemented as a tool to diagnose possible dynamical patterns of malaria incidence under several scenarios, as well as a decision-making tool for the early detection and control of outbreaks. The model will be also able to be merged with forecasts of El Niño events to provide a National Malaria Early Warning System

    Detectability of Plasmodium falciparum clones

    Get PDF
    BACKGROUND: In areas of high transmission people often harbour multiple clones of Plasmodium falciparum, but even PCR-based diagnostic methods can only detect a fraction (the detectability, q) of all clones present in a host. Accurate measurements of detectability are desirable since it affects estimates of multiplicity of infection, prevalence, and frequency of breakthrough infections in clinical drug trials. Detectability can be estimated by typing repeated samples from the same host but it has been unclear what should be the time interval between the samples and how the data should be analysed. METHODS: A longitudinal molecular study was conducted in the Kassena-Nankana district in northern Ghana. From each of the 80 participants, four finger prick samples were collected over a period of 8 days, and tested for presence of different Merozoite Surface Protein (msp) 2 genotypes. Implications for estimating q were derived from these data by comparing the fit of statistical models of serial dependence and over-dispersion. RESULTS: The distribution of the frequencies of detection for msp2 genotypes was close to binomial if the time span between consecutive blood samples was at least 7 days. For shorter intervals the probabilities of detection were positively correlated, i.e. the shorter the interval between two blood collections, the more likely the diagnostic results matched for a particular genotype. Estimates of q were rather insensitive to the statistical model fitted. CONCLUSIONS: A simple algorithm based on analysing blood samples collected 7 days apart is justified for generating robust estimates of detectability. The finding of positive correlation of detection probabilities for short time intervals argues against imperfect detection being directly linked to the 48-hour periodicity of P. falciparum. The results suggest that the detectability of a given parasite clone changes over time, at an unknown rate, but fast enough to regard blood samples taken one week apart as statistically independent

    Long-Lasting Control of Anopheles arabiensis by a Single Spray Application of Micro-encapsulated Pirimiphos-methyl (Actellic(R) 300 CS).

    Get PDF
    Pyrethroid-resistant mosquitoes are an increasing threat to malaria vector control. The Global Plan for Insecticide Resistance Management (GPIRM) recommends rotation of non-pyrethroid insecticides for indoor residual spraying (IRS). The options from other classes are limited. The carbamate bendiocarb and the organophosphate pirimiphos-methyl (p-methyl) emulsifiable concentrate (EC) have a short residual duration of action, resulting in increased costs due to multiple spray cycles, and user fatigue. Encapsulation (CS) technology was used to extend the residual performance of p-methyl. Two novel p-methyl CS formulations were evaluated alongside the existing EC in laboratory bioassays and experimental hut trials in Tanzania between 2008-2010. Bioassays were carried out monthly on sprayed substrates of mud, concrete, plywood, and palm thatch to assess residual activity. Experimental huts were used to assess efficacy against wild free-flying Anopheles arabiensis, in terms of insecticide-induced mortality and blood-feeding inhibition. In laboratory bioassays of An. arabiensis and Culex quinquefasciatus both CS formulations produced high rates of mortality for significantly longer than the EC formulation on all substrates. On mud, the best performing CS killed >80% of An. arabiensis for five months and >50% for eight months, compared with one and two months, respectively, for the EC. In monthly bioassays of experimental hut walls the EC was ineffective shortly after spraying, while the best CS formulation killed more than 80% of An. arabiensis for five months on mud, and seven months on concrete. In experimental huts both CS and EC formulations killed high proportions of free-flying wild An. arabiensis for up to 12 months after spraying. There was no significant difference between treatments. All treatments provided considerable personal protection, with blood-feeding inhibition ranging from 9-49% over time. The long residual performance of p-methyl CS was consistent in bioassays and experimental huts. The CS outperformed the EC in laboratory and hut bioassays but the EC longevity in huts was unexpected. Long-lasting p-methyl CS formulations should be more effective than both p-methyl EC and bendiocarb considering a single spray could be sufficient for annual malaria control. IRS with p-methyl 300 CS is a timely addition to the limited portfolio of long-lasting residual insecticides

    Time-Lapse Imaging of the Dynamics of CNS Glial-Axonal Interactions In Vitro and Ex Vivo

    Get PDF
    Myelination is an exquisite and dynamic example of heterologous cell-cell interaction, which consists of the concentric wrapping of multiple layers of oligodendrocyte membrane around neuronal axons. Understanding the mechanism by which oligodendrocytes ensheath axons may bring us closer to designing strategies to promote remyelination in demyelinating diseases. The main aim of this study was to follow glial-axonal interactions over time both in vitro and ex vivo to visualize the various stages of myelination.We took two approaches to follow myelination over time: i) time-lapse imaging of mixed CNS myelinating cultures generated from mouse spinal cord to which exogenous GFP-labelled murine cells were added, and ii) ex vivo imaging of the spinal cord of shiverer (Mbp mutant) mice, transplanted with GFP-labelled murine neurospheres. We demonstrate that oligodendrocyte-axonal interactions are dynamic events with continuous retraction and extension of oligodendroglial processes. Using cytoplasmic and membrane-GFP labelled cells to examine different components of the myelin-like sheath, we provide evidence from time-lapse fluorescence microscopy and confocal microscopy that the oligodendrocytes' cytoplasm-filled processes initially spiral around the axon in a corkscrew-like manner. This is followed subsequently by focal expansion of the corkscrew process to form short cuffs, which then extend longitudinally along the axons. We predict from this model that these spiral cuffs must extend over each other first before extending to form internodes of myelin.These experiments show the feasibility of visualizing the dynamics of glial-axonal interaction during myelination over time. Moreover, these approaches complement each other with the in vitro approach allowing visualization of an entire internodal length of myelin and the ex vivo approach validating the in vitro data

    Enhanced Food Anticipatory Activity Associated with Enhanced Activation of Extrahypothalamic Neural Pathways in Serotonin2C Receptor Null Mutant Mice

    Get PDF
    The ability to entrain circadian rhythms to food availability is important for survival. Food-entrained circadian rhythms are characterized by increased locomotor activity in anticipation of food availability (food anticipatory activity). However, the molecular components and neural circuitry underlying the regulation of food anticipatory activity remain unclear. Here we show that serotonin2C receptor (5-HT2CR) null mutant mice subjected to a daytime restricted feeding schedule exhibit enhanced food anticipatory activity compared to wild-type littermates, without phenotypic differences in the impact of restricted feeding on food consumption, body weight loss, or blood glucose levels. Moreover, we show that the enhanced food anticipatory activity in 5-HT2CR null mutant mice develops independent of external light cues and persists during two days of total food deprivation, indicating that food anticipatory activity in 5-HT2CR null mutant mice reflects the locomotor output of a food-entrainable oscillator. Whereas restricted feeding induces c-fos expression to a similar extent in hypothalamic nuclei of wild-type and null mutant animals, it produces enhanced expression in the nucleus accumbens and other extrahypothalamic regions of null mutant mice relative to wild-type subjects. These data suggest that 5-HT2CRs gate food anticipatory activity through mechanisms involving extrahypothalamic neural pathways

    Population, behavioural and environmental drivers of malaria prevalence in the Democratic Republic of Congo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria is highly endemic in the Democratic Republic of Congo (DRC), but the limits and intensity of transmission within the country are unknown. It is important to discern these patterns as well as the drivers which may underlie them in order for effective prevention measures to be carried out.</p> <p>Methods</p> <p>By applying high-throughput PCR analyses on leftover dried blood spots from the 2007 Demographic and Health Survey (DHS) for the DRC, prevalence estimates were generated and ecological drivers of malaria were explored using spatial statistical analyses and multilevel modelling.</p> <p>Results</p> <p>Of the 7,746 respondents, 2268 (29.3%) were parasitaemic; prevalence ranged from 0-82% within geographically-defined survey clusters. Regional variation in these rates was mapped using the inverse-distance weighting spatial interpolation technique. Males were more likely to be parasitaemic than older people or females (p < 0.0001), while wealthier people were at a lower risk (p < 0.001). Increased community use of bed nets (p = 0.001) and community wealth (p < 0.05) were protective against malaria at the community level but not at the individual level. Paradoxically, the number of battle events since 1994 surrounding one's community was negatively associated with malaria risk (p < 0.0001).</p> <p>Conclusions</p> <p>This research demonstrates the feasibility of using population-based behavioural and molecular surveillance in conjunction with DHS data and geographic methods to study endemic infectious diseases. This study provides the most accurate population-based estimates to date of where illness from malaria occurs in the DRC and what factors contribute to the estimated spatial patterns. This study suggests that spatial information and analyses can enable the DRC government to focus its control efforts against malaria.</p

    Evolution of the Multi-Domain Structures of Virulence Genes in the Human Malaria Parasite, Plasmodium falciparum

    Get PDF
    The var gene family of Plasmodium falciparum encodes the immunodominant variant surface antigens PfEMP1. These highly polymorphic proteins are important virulence factors that mediate cytoadhesion to a variety of host tissues, causing sequestration of parasitized red blood cells in vital organs, including the brain or placenta. Acquisition of variant-specific antibodies correlates with protection against severe malarial infections; however, understanding the relationship between gene expression and infection outcome is complicated by the modular genetic architectures of var genes that encode varying numbers of antigenic domains with differential binding specificities. By analyzing the domain architectures of fully sequenced var gene repertoires we reveal a significant, non-random association between the number of domains comprising a var gene and their sequence conservation. As such, var genes can be grouped into those that are short and diverse and genes that are long and conserved, suggesting gene length as an important characteristic in the classification of var genes. We then use an evolutionary framework to demonstrate how the same evolutionary forces acting on the level of an individual gene may have also shaped the parasite's gene repertoire. The observed associations between sequence conservation, gene architecture and repertoire structure can thus be explained by a trade-off between optimizing within-host fitness and minimizing between-host immune selection pressure. Our results demonstrate how simple evolutionary mechanisms can explain var gene structuring on multiple levels and have important implications for understanding the multifaceted epidemiology of P. falciparum malaria

    Genome wide linkage study, using a 250K SNP map, of Plasmodium falciparum infection and mild malaria attack in a Senegalese population

    Get PDF
    Multiple factors are involved in the variability of host's response to P. falciparum infection, like the intensity and seasonality of malaria transmission, the virulence of parasite and host characteristics like age or genetic make-up. Although admitted nowadays, the involvement of host genetic factors remains unclear. Discordant results exist, even concerning the best-known malaria resistance genes that determine the structure or function of red blood cells. Here we report on a genomewide linkage and association study for P. falciparum infection intensity and mild malaria attack among a Senegalese population of children and young adults from 2 to 18 years old. A high density single nucleotide polymorphisms (SNP) genome scan (Affimetrix GeneChip Human Mapping 250K-nsp) was performed for 626 individuals: i.e. 249 parents and 377 children out of the 504 ones included in the follow-up. The population belongs to a unique ethnic group and was closely followed-up during 3 years. Genome-wide linkage analyses were performed on four clinical and parasitological phenotypes and association analyses using the family based association tests (FBAT) method were carried out in regions previously linked to malaria phenotypes in literature and in the regions for which we identified a linkage peak. Analyses revealed three strongly suggestive evidences for linkage: between mild malaria attack and both the 6p25.1 and the 12q22 regions (empirical p-value = 5 x 10(-5) and 96 x 10(-5) respectively), and between the 20p11q11 region and the prevalence of parasite density in asymptomatic children (empirical p-value = 1.5 x 10(-4)). Family based association analysis pointed out one significant association between the intensity of plasmodial infection and a polymorphism located in ARHGAP26 gene in the 5q31-q33 region (p-value = 3.7 x 10(-5)). This study identified three candidate regions, two of them containing genes that could point out new pathways implicated in the response to malaria infection. Furthermore, we detected one gene associated with malaria infection in the 5q31-q33 region

    A short history of the 5-HT2C receptor: from the choroid plexus to depression, obesity and addiction treatment

    Get PDF
    This paper is a personal account on the discovery and characterization of the 5-HT2C receptor (first known as the 5- HT1C receptor) over 30 years ago and how it translated into a number of unsuspected features for a G protein-coupled receptor (GPCR) and a diversity of clinical applications. The 5-HT2C receptor is one of the most intriguing members of the GPCR superfamily. Initially referred to as 5-HT1CR, the 5-HT2CR was discovered while studying the pharmacological features and the distribution of [3H]mesulergine-labelled sites, primarily in the brain using radioligand binding and slice autoradiography. Mesulergine (SDZ CU-085), was, at the time, best defined as a ligand with serotonergic and dopaminergic properties. Autoradiographic studies showed remarkably strong [3H]mesulergine-labelling to the rat choroid plexus. [3H]mesulergine-labelled sites had pharmacological properties different from, at the time, known or purported 5-HT receptors. In spite of similarities with 5-HT2 binding, the new binding site was called 5-HT1C because of its very high affinity for 5-HT itself. Within the following 10 years, the 5-HT1CR (later named 5- HT2C) was extensively characterised pharmacologically, anatomically and functionally: it was one of the first 5-HT receptors to be sequenced and cloned. The 5-HT2CR is a GPCR, with a very complex gene structure. It constitutes a rarity in theGPCR family: many 5-HT2CR variants exist, especially in humans, due to RNA editing, in addition to a few 5-HT2CR splice variants. Intense research led to therapeutically active 5-HT2C receptor ligands, both antagonists (or inverse agonists) and agonists: keeping in mind that a number of antidepressants and antipsychotics are 5- HT2CR antagonists/inverse agonists. Agomelatine, a 5-HT2CR antagonist is registered for the treatment of major depression. The agonist Lorcaserin is registered for the treatment of aspects of obesity and has further potential in addiction, especially nicotine/ smoking. There is good evidence that the 5-HT2CR is involved in spinal cord injury-induced spasms of the lower limbs, which can be treated with 5-HT2CR antagonists/inverse agonists such as cyproheptadine or SB206553. The 5-HT2CR may play a role in schizophrenia and epilepsy. Vabicaserin, a 5-HT2CR agonist has been in development for the treatment of schizophrenia and obesity, but was stopped. As is common, there is potential for further indications for 5-HT2CR ligands, as suggested by a number of preclinical and/or genome-wide association studies (GWAS) on depression, suicide, sexual dysfunction, addictions and obesity. The 5-HT2CR is clearly affected by a number of established antidepressants/antipsychotics and may be one of the culprits in antipsychotic-induced weight gain
    corecore