83 research outputs found

    Magma-driven, high-grade metamorphism in the Sveconorwegian Province, southwest Norway, during the terminal stages of Fennoscandian Shield evolution

    Get PDF
    Recently it has been argued that the Sveconorwegian orogeny in southwest Fennoscandia comprised a series of accretionary events between 1140 and 920 Ma, behind a long-lived, active continental margin characterized by voluminous magmatism and high-grade metamorphism. Voluminous magnesian granitic magmatism is recorded between 1070 and 1010 Ma (Sirdal Magmatic Belt, SMB), with an apparent drop in activity ca. 1010-1000 Ma. Granitic magmatism resumed ca. 1000-990 Ma, but with more ferroan (A type) compositions (hornblende-biotite granites). This ferroan granitic magmatism was continuous until 920 Ma, and included emplacement of an AMCG (anorthosite-mangerite-charnockite-granite) complex (Rogaland Igneous Complex). Mafic rocks with ages corresponding to the spatially associated granites suggest that heat from underplated mafic magma was the main driving force for lower crustal melting and long-lived granitic magmatism. The change from magnesian to ferroan compositions may reflect an increasingly depleted and dehydrated lower crustal source. High-grade metamorphic rocks more than ~20 km away from the Rogaland Igneous Complex yield metamorphic ages of 1070-1015 Ma, corresponding to SMB magmatism, whereas similar rocks closer to the Rogaland Igneous Complex yield ages between 1100 and 920 Ma, with an apparent age peak ca. 1000 Ma. Ti-in-zircon temperatures from these rocks increase from ~760 to 820 °C ca. 970 Ma, well before the inferred emplacement age of the Rogaland Igneous Complex (930 Ma), suggesting that long-lived, high-grade metamorphism was not directly linked to the emplacement of the latter, but rather to the same mafic underplating that was driving lower crustal melting. Structural data suggest that the present-day regional distribution of high- and low-grade rocks reflects late-stage orogenic doming

    Was Baltica part of Rodinia?

    Get PDF
    Late Ediacaran opening of the Iapetus Ocean is typically considered to reflect separation of Baltica and Laurentia during final breakup of the Rodinia supercontinent, with subsequent closure during the Caledonian Orogeny. However, evidence of the pre-opening juxtaposition of Baltica and Laurentia is limited to purportedly similar apparent polar wander paths and correlation of Rodinia-forming orogenic events. We show that a range of existing data do not unequivocally support correlation of these orogens, and that geologic and palaeomagnetic data instead favour separation of Baltica and Laurentia as early as 1.1–1.2 Ga. Furthermore, new detrital zircon U–Pb age and Ar–Ar thermochronological data from Norway point towards an active western Baltican margin throughout most of the Neoproterozoic and early Palaeozoic. These findings are inconsistent with the majority of palaeogeographic reconstructions that place Baltica near the core of the Rodinia supercontinent

    Hydrocarbon generation and migration from Barremian – Aptian source rocks, Northern Orange Basin, offshore Western South Africa: A 3d numerical modelling study

    Get PDF
    A 3D numerical modelling workflow was applied to the Barremian—Aptian source rock interval in a shelfal to lower slope area of the northern Orange Basin, offshore western South Africa. The main objective was to investigate the timing of hydrocarbon generation and migration. Hydrocarbon migration has previously been investigated in the south of the basin by relating gas escape features with structural elements as seen on seismic sections, but migration pathways are still poorly understood. The modelling study was based on data from three exploration wells (AO-1, AE-1 and AF-1) together with 42 2D seismic sections totalling 3537 km in length, and a 3D seismic cube covering an area of 750 sq. km. Modelled formation temperatures increase from north to south in the study area and were consistent with downhole temperatures at well locations. However, there is variation between measured and modelled values of vitrinite reflectance (VR), especially in the Turonian and Cenomanian intervals. The measured VR is lower than the modelled VR within the Turonian section in the north of the study area, suggesting that erosion has affected the thermal maturity of the sediments. However, in the Cenomanian interval, the measured VR is higher than the modelled VR. Uplift, increased erosion in the hinterland and sediment transport to the coastal areas resulted in Cenomanian progradation of the Orange Basin fill

    Temperature dependence of CO2-enhanced primary production in the European Arctic Ocean

    Get PDF
    The Arctic Ocean is warming at two to three times the global rate1 and is perceived to be a bellwether for ocean acidification2, 3. Increased CO2 concentrations are expected to have a fertilization effect on marine autotrophs4, and higher temperatures should lead to increased rates of planktonic primary production5. Yet, simultaneous assessment of warming and increased CO2 on primary production in the Arctic has not been conducted. Here we test the expectation that CO2-enhanced gross primary production (GPP) may be temperature dependent, using data from several oceanographic cruises and experiments from both spring and summer in the European sector of the Arctic Ocean. Results confirm that CO2 enhances GPP (by a factor of up to ten) over a range of 145–2,099 μatm; however, the greatest effects are observed only at lower temperatures and are constrained by nutrient and light availability to the spring period. The temperature dependence of CO2-enhanced primary production has significant implications for metabolic balance in a warmer, CO2-enriched Arctic Ocean in the future. In particular, it indicates that a twofold increase in primary production during the spring is likely in the Arctic

    Cryptic Disc Structures Resembling Ediacaran Discoidal Fossils from the Lower Silurian Hellefjord Schist, Arctic Norway

    Get PDF
    The Hellefjord Schist, a volcaniclastic psammite-pelite formation in the Caledonides of Arctic Norway contains discoidal impressions and apparent tube casts that share morphological and taphonomic similarities to Neoproterozoic stem-holdfast forms. U-Pb zircon geochronology on the host metasediment indicates it was deposited between 437 ± 2 and 439 ± 3 Ma, but also indicates that an inferred basal conglomerate to this formation must be part of an older stratigraphic element, as it is cross-cut by a 546 ± 4 Ma pegmatite. These results confirm that the Hellefjord Schist is separated from underlying older Proterozoic rocks by a thrust. It has previously been argued that the Cambrian Substrate Revolution destroyed the ecological niches that the Neoproterozoic frond-holdfasts organisms occupied. However, the discovery of these fossils in Silurian rocks demonstrates that the environment and substrate must have been similar enough to Neoproterozoic settings that frond-holdfast bodyplans were still ecologically viable some hundred million years later

    Crustal and basin evolution of the southwestern Barents Sea: from Caledonian orogeny to continental breakup

    No full text
    A new generation of aeromagnetic data documents the post-Caledonide rift evolution of the southwestern Barents Sea (SWBS) from the Norwegian mainland up to the continent-ocean transition. We propose a geological and tectonic scenario of the SWBS in which the Caledonian nappes and thrust sheets, well-constrained onshore, swing from a NE-SW trend onshore Norway to NW-SE/NNW-SSE across the SWBS platform area. On the Finnmark and Bjarmeland platforms, the dominant inherited magnetic basement pattern may also reflect the regional and post-Caledonian development of the late Paleozoic basins. Farther west, the pre-breakup rift system is characterized by the Loppa and Stappen Highs, which are interpreted as a series of rigid continental blocks (ribbons) poorly thinned as compared to the adjacent grabens and sag basins. As part of the complex western rift system, the Bjørnøya Basin is interpreted as a propagating system of highly thinned crust, which aborted in late Mesozoic time. This thick Cretaceous sag basin is underlain by a deep-seated high-density body, interpreted as exhumed high-grade metamorphic lower crust. The abortion of this propagating basin coincides with a migration and complete reorganization of the crustal extension toward a second necking zone defined at the level of the western volcanic sheared margin and proto-breakup axis. The abortion of the Bjørnøya Basin may be partly explained by its trend oblique to the regional, inherited, structural grain, revealed by the new aeromagnetic compilation, and by the onset of further weakening later sustained by the onset of magmatism to the west

    Simulation and visualization of coupled hydrodynamical, chemical and biological models

    No full text
    This paper briefly describes the principles of hydrodynamical and ecological modelling of marine systems and how model results are presented by use of MATLAB. Two application examples are shown. One refers to modelling and simulation of the carbon vertical transport in the Greenland Sea and the other is a study on the effect of wind pattern for the invasion success of zooplankton from the Norwegian Sea into the North Sea by use of particle tracking
    corecore