47 research outputs found

    Revealing natural relationships among arbuscular mycorrhizal fungi: culture line BEG47 represents Diversispora epigaea, not Glomus versiforme

    Get PDF
    Background: Understanding the mechanisms underlying biological phenomena, such as evolutionarily conservative trait inheritance, is predicated on knowledge of the natural relationships among organisms. However, despite their enormous ecological significance, many of the ubiquitous soil inhabiting and plant symbiotic arbuscular mycorrhizal fungi (AMF, phylum Glomeromycota) are incorrectly classified. Methodology/Principal Findings: Here, we focused on a frequently used model AMF registered as culture BEG47. This fungus is a descendent of the ex-type culture-lineage of Glomus epigaeum, which in 1983 was synonymised with Glomus versiforme. It has since then been used as ‘G. versiforme BEG47’. We show by morphological comparisons, based on type material, collected 1860–61, of G. versiforme and on type material and living ex-type cultures of G. epigaeum, that these two AMF species cannot be conspecific, and by molecular phylogenetics that BEG47 is a member of the genus Diversispora. Conclusions: This study highlights that experimental works published during the last >25 years on an AMF named ‘G. versiforme’ or ‘BEG47’ refer to D. epigaea, a species that is actually evolutionarily separated by hundreds of millions of years from all members of the genera in the Glomerales and thus from most other commonly used AMF ‘laboratory strains’. Detailed redescriptions substantiate the renaming of G. epigaeum (BEG47) as D. epigaea, positioning it systematically in the order Diversisporales, thus enabling an evolutionary understanding of genetical, physiological, and ecological traits, relative to those of other AMF. Diversispora epigaea is widely cultured as a laboratory strain of AMF, whereas G. versiforme appears not to have been cultured nor found in the field since its original description

    Prediction of Breast and Prostate Cancer Risks in Male BRCA1 and BRCA2 Mutation Carriers Using Polygenic Risk Scores

    Get PDF
    PurposeBRCA1/2 mutations increase the risk of breast and prostate cancer in men. Common genetic variants modify cancer risks for female carriers of BRCA1/2 mutations. We investigatedfor the first time to our knowledgeassociations of common genetic variants with breast and prostate cancer risks for male carriers of BRCA1/2 mutations and implications for cancer risk prediction.Materials and MethodsWe genotyped 1,802 male carriers of BRCA1/2 mutations from the Consortium of Investigators of Modifiers of BRCA1/2 by using the custom Illumina OncoArray. We investigated the combined effects of established breast and prostate cancer susceptibility variants on cancer risks for male carriers of BRCA1/2 mutations by constructing weighted polygenic risk scores (PRSs) using published effect estimates as weights.ResultsIn male carriers of BRCA1/2 mutations, PRS that was based on 88 female breast cancer susceptibility variants was associated with breast cancer risk (odds ratio per standard deviation of PRS, 1.36; 95% CI, 1.19 to 1.56; P = 8.6 x 10(-6)). Similarly, PRS that was based on 103 prostate cancer susceptibility variants was associated with prostate cancer risk (odds ratio per SD of PRS, 1.56; 95% CI, 1.35 to 1.81; P = 3.2 x 10(-9)). Large differences in absolute cancer risks were observed at the extremes of the PRS distribution. For example, prostate cancer risk by age 80 years at the 5th and 95th percentiles of the PRS varies from 7% to 26% for carriers of BRCA1 mutations and from 19% to 61% for carriers of BRCA2 mutations, respectively.ConclusionPRSs may provide informative cancer risk stratification for male carriers of BRCA1/2 mutations that might enable these men and their physicians to make informed decisions on the type and timing of breast and prostate cancer risk management.Peer reviewe

    Association of genomic domains in BRCA1 and BRCA2 with prostate cancer risk and aggressiveness

    Get PDF
    Pathogenic sequence variants (PSV) in BRCA1 or BRCA2 (BRCA1/2) are associated with increased risk and severity of prostate cancer. Weevaluated whether PSVs inBRCA1/2 were associated with risk of overall prostate cancer or high grade (Gleason 8+) prostate cancer using an international sample of 65 BRCA1 and 171 BRCA2 male PSV carriers with prostate cancer, and 3,388 BRCA1 and 2,880 BRCA2 male PSV carriers without prostate cancer. PSVs in the 30 region of BRCA2 (c.7914+) were significantly associated with elevated risk of prostate cancer compared with reference bin c.1001c.7913 [HR = 1.78; 95% confidence interval (CI), 1.25-2.52; P = 0.001], as well as elevated risk of Gleason 8+ prostate cancer (HR = 3.11; 95% CI, 1.63-5.95; P = 0.001). c.756-c.1000 was also associated with elevated prostate cancer risk (HR = 2.83; 95% CI, 1.71-4.68; P = 0.00004) and elevated risk of Gleason 8+prostate cancer (HR = 4.95; 95% CI, 2.12-11.54; P = 0.0002). No genotype-phenotype associations were detected for PSVs in BRCA1. These results demonstrate that specific BRCA2 PSVs may be associated with elevated risk of developing aggressive prostate cancer. Significance: Aggressive prostate cancer risk in BRCA2 mutation carriers may vary according to the specific BRCA2 mutation inherited by the at-risk individual.Peer reviewe

    Accurate and Model-Free Pose Estimation of Crash Test Dummies

    No full text
    In this chapter, we present a model-free pose estimation algorithm to estimate the relative pose of a rigid object. In the context of human motion, a rigid object can be either a limb, the head, or the back. In most pose estimation algorithms, the object of interest covers a large image area. We focus on pose estimation of objects covering a field of view of less than 5^\circ\ by 5^\circ\ using stereo vision. With this new algorithm suitable for small objects, we investigate the effect of the object size on the pose accuracy. In addition, we introduce an object tracking technique that is insensitive to partial occlusion. We are particularly interested in human motion in this context focusing on crash test dummies. The main application for this method is the analysis of crash video sequences. For a human motion capture system, a connection of the various limbs can be done in an additional step. The ultimate goal is to fully obtain the motion of crash test dummies in a vehicle crash. This would give information on which body part is exposed to what kind of forces and rotational forces could be determined as well. Knowing all this, car manufacturers can optimize the passive safety components to reduce forces on the dummy and ultimately on the real vehicle passengers. Since camera images for crash videos contain the whole crash vehicle, the size of the crash test dummies is relatively small in our experiments. For these experiments, mostly high-speed cameras with high resolution are used. However, the method described here easily extends to real-time robotics applications with smaller VGA-size images, where relative pose estimation is needed, {e.g.}\ for manipulator control

    Schizophrenia susceptibility loci on chromosomes 13q32 and 8p21

    No full text
    Schizophrenia is a common disorder characterized by psychotic symptoms; diagnostic criteria have been established(1). Family, twin and adoption studies suggest that both genetic and environmental factors influence susceptibility (heritability is approximately 71%; ref. 2), however, little is known about the aetiology of schizophrenia. Clinical and family studies suggest aetiological heterogeneity(3-6). Previously, we reported that regions on chromosomes 22, 3 and 8 may be associated with susceptibility to schizophrenia(7-8), and collaborations provided some support for regions on chromosomes 8 and 22 (refs 9-13). We present here a genome-wide scan for schizophrenia susceptibility loci (SSL) using 452 microsatellite markers on 54 multiplex pedigrees. Non-parametric linkage (NPL) analysis provided significant evidence for an SSL on chromosome 13q32 (NPL score=4.18; P=0.00002), and suggestive evidence for another SSL on chromosome 8p21-22 (NPL=3.64; P=0.0001). Parametric linkage analysis provided additional support for these SSL. Linkage evidence at chromosome 8 is weaker than that at chromosome 13, so it is more probable that chromosome 8 may be a false positive linkage. Additional putative SSL were noted on chromosomes 14q13 (NPL=2.57: P=0.005), 7q11 (NPL=2.50, P=0.007) and 22q11 (NPL=2.42, P=0.009). Verification of suggestive SSL on chromosomes 13q and 8p was attempted in a follow-up sample of 54 multiplex pedigrees. This analysis confirmed the SSL in 13q14-q33 (NPL=2.36, P=0.007) and supported the SSL in 8p22-p21 (NPL=1.95, P=0.023)
    corecore