400 research outputs found

    Conversion from forests to pastures in the Colombian Amazon leads to contrasting soil carbon dynamics depending on land management practices

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this recordStrategies to mitigate climate change by reducing deforestation and forest degradation (e.g. REDD+) require country- or region-specific information on temporal changes in forest carbon (C) pools to develop accurate emission factors. The soil C pool is one of the most important C reservoirs, but is rarely included in national forest reference emission levels due to a lack of data. Here, we present the soil organic C (SOC) dynamics along 20 years of forest-to-pasture conversion in two subregions with different management practices during pasture establishment in the Colombian Amazon: high-grazing intensity (HG) and low-grazing intensity (LG) subregions. We determined the pattern of SOC change resulting from the conversion from forest (C3 plants) to pasture (C4 plants) by analysing total SOC stocks and the natural abundance of the stable isotopes (13) C along two 20-year chronosequences identified in each subregion. We also analysed soil N stocks and the natural abundance of (15) N during pasture establishment. In general, total SOC stocks at 30 cm depth in the forest were similar for both subregions, with an average of 47.1 ± 1.8 Mg C ha(-1) in HG and 48.7 ± 3.1 Mg C ha(-1) in LG. However, 20 years after forest-to-pasture conversion SOC in HG decreased by 20%, whereas in LG SOC increased by 41%. This net SOC decrease in HG was due to a larger reduction in C3-derived input and to a comparatively smaller increase in C4-derived C input. In LG both C3- and C4-derived C input increased along the chronosequence. N stocks were generally similar in both subregions and soil N stock changes during pasture establishment were correlated with SOC changes. These results emphasize the importance of management practices involving low-grazing intensity in cattle activities to preserve SOC stocks and to reduce C emissions after land-cover change from forest to pasture in the Colombian Amazon.This study was funded by AXA Research Fund (2012‐Doc‐University‐of‐Exeter‐NAVARRETE‐D)

    Widening access to medical education for under-represented socioeconomic groups: population based cross sectional analysis of UK data, 2002-6

    Get PDF
    Objective To determine whether new programmes developed to widen access to medicine in the United Kingdom have produced more diverse student populations

    Conversion from forests to pastures in the Colombian Amazon leads to differences in dead wood dynamics depending on land management practices

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordDead wood, composed of coarse standing and fallen woody debris (CWD), is an important carbon (C) pool in tropical forests and its accounting is needed to reduce uncertainties within the strategies to mitigate climate change by reducing deforestation and forest degradation (REDD+). To date, information on CWD stocks in tropical forests is scarce and effects of land-cover conversion and land management practices on CWD dynamics remain largely unexplored. Here we present estimates on CWD stocks in primary forests in the Colombian Amazon and their dynamics along 20 years of forest-to-pasture conversion in two sub-regions with different management practices during pasture establishment: high-grazing intensity (HG) and low-grazing intensity (LG) sub-regions. Two 20-year-old chronosequences describing the forest-to-pasture conversion were identified in both sub-regions. The line-intersect and the plot-based methods were used to estimate fallen and standing CWD stocks, respectively. Total necromass in primary forests was similar between both sub-regions (35.6 ± 5.8 Mg ha(-1) in HG and 37.0 ± 7.4 Mg ha(-1) in LG). An increase of ∌124% in CWD stocks followed by a reduction to values close to those at the intact forests were registered after slash-and-burn practice was implemented in both sub-regions during the first two years of forest-to-pasture conversion. Implementation of machinery after using fire in HG pastures led to a reduction of 82% in CWD stocks during the second and fifth years of pasture establishment, compared to a decrease of 41% during the same period in LG where mechanization is not implemented. Finally, average necromass 20 years after forest-to-pasture conversion decreased to 3.5 ± 1.4 Mg ha(-1) in HG and 9.3 ± 3.5 Mg ha(-1) in LG, representing a total reduction of between 90% and 75% in each sub-region, respectively. These results highlight the importance of low-grazing intensity management practices during ranching activities in the Colombian Amazon to reduce C emissions associated with land-cover change from forest to pasture.This study was funded by AXA Research Fund (2012-Doc-University-of-Exeter-NAVARRETE-D)

    Early warning scores generated in developed healthcare settings are not sufficient at predicting early mortality in Blantyre, Malawi : a prospective cohort study

    Get PDF
    Early warning scores (EWS) are widely used in well-resourced healthcare settings to identify patients at risk of mortality. The Modified Early Warning Score (MEWS) is a well-known EWS used comprehensively in the United Kingdom. The HOTEL score (Hypotension, Oxygen saturation, Temperature, ECG abnormality, Loss of independence) was developed and tested in a European cohort; however, its validity is unknown in resource limited settings. This study compared the performance of both scores and suggested modifications to enhance accuracy

    Sample size calculations for cluster randomised controlled trials with a fixed number of clusters

    Get PDF
    Background\ud Cluster randomised controlled trials (CRCTs) are frequently used in health service evaluation. Assuming an average cluster size, required sample sizes are readily computed for both binary and continuous outcomes, by estimating a design effect or inflation factor. However, where the number of clusters are fixed in advance, but where it is possible to increase the number of individuals within each cluster, as is frequently the case in health service evaluation, sample size formulae have been less well studied. \ud \ud Methods\ud We systematically outline sample size formulae (including required number of randomisation units, detectable difference and power) for CRCTs with a fixed number of clusters, to provide a concise summary for both binary and continuous outcomes. Extensions to the case of unequal cluster sizes are provided. \ud \ud Results\ud For trials with a fixed number of equal sized clusters (k), the trial will be feasible provided the number of clusters is greater than the product of the number of individuals required under individual randomisation (nin_i) and the estimated intra-cluster correlation (ρ\rho). So, a simple rule is that the number of clusters (Îș\kappa) will be sufficient provided: \ud \ud Îș\kappa > nin_i x ρ\rho\ud \ud Where this is not the case, investigators can determine the maximum available power to detect the pre-specified difference, or the minimum detectable difference under the pre-specified value for power. \ud \ud Conclusions\ud Designing a CRCT with a fixed number of clusters might mean that the study will not be feasible, leading to the notion of a minimum detectable difference (or a maximum achievable power), irrespective of how many individuals are included within each cluster. \ud \u

    Technical note: A simple theoretical model framework to describe plant stomatal “sluggishness” in response to elevated ozone concentrations

    Get PDF
    Elevated levels of tropospheric ozone, O3, cause damage to terrestrial vegetation, affecting leaf stomatal functioning and reducing photosynthesis. Climatic impacts under future raised atmospheric greenhouse gas (GHG) concentrations will also impact on the net primary productivity (NPP) of vegetation, which might for instance alter viability of some crops. Together, ozone damage and climate change may adjust the current ability of terrestrial vegetation to offset a significant fraction of carbon dioxide (CO2) emissions. Climate impacts on the land surface are well studied, but arguably large-scale modelling of raised surface level O3 effects is less advanced. To date most models representing ozone damage use either O3 concentration or, more recently, flux-uptake-related reduction of stomatal opening, estimating suppressed land–atmosphere water and CO2 fluxes. However there is evidence that, for some species, O3 damage can also cause an inertial “sluggishness” of stomatal response to changing surface meteorological conditions. In some circumstances (e.g. droughts), this loss of stomata control can cause them to be more open than without ozone interference. To both aid model development and provide empiricists with a system on to which measurements can be mapped, we present a parameter-sparse framework specifically designed to capture sluggishness. This contains a single time-delay parameter τO3, characterizing the timescale for stomata to catch up with the level of opening they would have without damage. The larger the value of this parameter, the more sluggish the modelled stomatal response. Through variation of τO3, we find it is possible to have qualitatively similar responses to factorial experiments with and without raised O3, when comparing to reported measurement time series presented in the literature. This low-parameter approach lends itself to the inclusion of ozone-induced inertial effects being incorporated in the terrestrial vegetation component of Earth system models (ESMs)

    Vegetation distribution and terrestrial carbon cycle in a carbon cycle configuration of JULES4.6 with new plant functional types

    Get PDF
    This is the final version. Available on open access from EGU via the DOI in this recordDynamic global vegetation models (DGVMs) are used for studying historical and future changes to vegetation and the terrestrial carbon cycle. JULES (the Joint UK Land Environment Simulator) represents the land surface in the Hadley Centre climate models and in the UK Earth System Model. Recently the number of plant functional types (PFTs) in JULES was expanded from five to nine to better represent functional diversity in global ecosystems. Here we introduce a more mechanistic representation of vegetation dynamics in TRIFFID, the dynamic vegetation component of JULES, which allows for any number of PFTs to compete based solely on their height; therefore, the previous hardwired dominance hierarchy is removed. With the new set of nine PFTs, JULES is able to more accurately reproduce global vegetation distribution compared to the former five PFT version. Improvements include the coverage of trees within tropical and boreal forests and a reduction in shrubs, the latter of which dominated at high latitudes. We show that JULES is able to realistically represent several aspects of the global carbon (C) cycle. The simulated gross primary productivity (GPP) is within the range of observations, but simulated net primary productivity (NPP) is slightly too high. GPP in JULES from 1982 to 2011 is 133PgCyrg'1, compared to observation-based estimates (over the same time period) between 1238 and 150-175PgCyrg'1. NPP from 2000 to 2013 is 72PgCyrg'1, compared to satellite-derived NPP of 55PgCyrg'1 over the same period and independent estimates of 56.214.3PgCyrg'1. The simulated carbon stored in vegetation is 542PgC, compared to an observation-based range of 400-600PgC. Soil carbon is much lower (1422PgC) than estimates from measurements ( > 2400PgC), with large underestimations of soil carbon in the tropical and boreal forests. We also examined some aspects of the historical terrestrial carbon sink as simulated by JULES. Between the 1900s and 2000s, increased atmospheric carbon dioxide levels enhanced vegetation productivity and litter inputs into the soils, while land use change removed vegetation and reduced soil carbon. The result is a simulated increase in soil carbon of 57PgC but a decrease in vegetation carbon of 98PgC. The total simulated loss of soil and vegetation carbon due to land use change is 138PgC from 1900 to 2009, compared to a recent observationally constrained estimate of 15550PgC from 1901 to 2012. The simulated land carbon sink is 2.01.0PgCyrg'1 from 2000 to 2009, in close agreement with estimates from the IPCC and Global Carbon Project.The authors acknowledge support from the Natural Environment Research Council (NERC) Joint Weather and Climate Research Programme through grant numbers NE/K016016/1 (Anna B. Harper) and NEC05816 (Lina M. Mercado). NERC support was also provided to Lina M. Mercado through the UK Earth System Modelling project (UKESM, grant NE/N017951/1). Anna B. Harper also acknowledges support from her EPSRC Fellowship (EP/N030141/1) and the EU H2020 project CRESCENDO (GA641816). The EU project FP7 LUC4C (GA603542) provided support for Stephen Sitch and Pierre Friedlingstein. The Met Office authors were supported by the Joint UK BEIS/Defra Met Office Hadley Centre Climate Programme (GA01101)

    Bridging scales: An approach to evaluate the temporal patterns of global transpiration products using tree‐scale sap flow data

    Get PDF
    This is the final version. Available from Wiley via the DOI in this record.Data Availability Statement All data used in this work is freely available at the GLEAM (https://gleam.io/) and SAPFLUXNET (http://sapfluxnet.creaf.cat/) online repositoriesTranspiration is a key process driving energy, water and thus carbon dynamics. Global transpiration products are fundamental for understanding and predicting vegetation processes. However, validation of these transpiration products is limited, mainly due to lack of suitable data sets. We propose a method to use SAPFLUXNET, the first quality-controlled global tree sap flow (SF) database, for evaluating transpiration products at global scale. Our method is based on evaluating temporal mismatches, rather than absolute values, by standardizing both transpiration and SF products. We evaluate how transpiration responses to hydro-meteorological variation from the Global Land Evaporation Amsterdam Model (GLEAM), a widely used global transpiration product, compare to in situ responses from SAPFLUXNET field data. Our results show GLEAM and SAPFLUXNET temporal trends are in good agreement, but diverge under extreme conditions. Their temporal mismatches differ depending on the magnitude of transpiration and are not random, but linked to energy and water availability. Despite limitations, we show that the new global SAPFLUXNET data set is a valuable tool to evaluate T products and identify problematic assumptions and processes embedded in models. The approach we propose can, therefore, be the foundation for a wider use of SAPFLUXNET, a new, independent, source of information, to understand the mechanisms controlling global transpiration fluxes.Natural Environment Research Council (NERC)Natural Environment Research Council (NERC)Ministerio de Ciencia e InnovaciĂłnEuropean Research CouncilNewton FundHumboldt Fellowship for Experienced Researcher
    • 

    corecore