
1.  Introduction
Transpiration (T), the evaporation of water from within plants, is a key process linking ecosystem energy, water 
and carbon dynamics, and accounts for ∼60% of global terrestrial evaporation, or “evapotranspiration” (ET) 
(Stoy et al., 2019; Wei et al., 2017). T is regulated by a complex combination of energy availability and soil 
moisture and atmospheric demand (Dolman et al., 2014). The responses of T to drought stress, at leaf, plant, and 
ecosystem scales, remain a huge source of uncertainty in understanding biosphere-atmosphere feedbacks (Maes 
et al., 2020). Understanding T responses under climate change is an even more challenging task, as responses to 
combined environmental changes, for example, changes in water, nitrogen and CO2 availability, alongside land 
use changes additively and interactively modulate the way T is controlled by vegetation (Keenan et al., 2013; 
Lemordant et al., 2018). Additionally, ongoing global changes are causing plants to acclimate and communities 
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to change, which might be shifting or modifying the way T is regulated by vegetation (Kumarathunge et al., 2019; 
Stephens et al., 2021). Recent studies indicate climate change is making global T fluxes more sensitive to vege-
tation responses (Forzieri et al., 2020). Global T products are therefore key to help us determine the mechanisms 
driving plant and ecosystem T at global scales and to monitor vegetation responses as climate changes. However, 
without quality-controlled T products, validated against empirical data, our capabilities to predict land surface 
interactions may be limited (Stoy et al., 2019).

In the past decade, multiple models have been developed to derive global T and ET largely from remotely sensed 
(RS) data (Fisher et al., 2017). These RS-derived ET products, such as the Global Land Evaporation Amsterdam 
Model (GLEAM; Miralles et  al.,  2011; Martens et  al.,  2017) are used for a diversity of purposes, for exam-
ple, quantification of water resources (Immerzeel et  al.,  2020), driving basin hydrological models (Dembélé 
et  al.,  2020), studying global climate (Martens et  al.,  2018; Miralles et  al.,  2014) and benchmarking climate 
models, such as those from CMIP6 (Z. Z. Wang et al., 2021). These RS models retrieve ET indirectly by applying 
process-based (Miralles et al., 2016) or machine learning (Jung et al., 2019) algorithms. This modeling induces 
errors, which are tightly related to the difficulties to properly capture the T component of ET, whose uncer-
tainties can be two to three times larger than for the total ET (Feng et al., 2020; Miralles et al., 2016; Talsma 
et al., 2018). Model improvement is limited by a lack of suitable data sets to directly validate T products, test 
the model's embedded mechanisms and constrain its parameters (Stoy et al., 2019). In fact, validation exercises 
are often insufficient (Bayat et al., 2021), hindered by the sparseness of in situ data (Fisher et al., 2017) and the 
limited availability of measurement techniques and data sets at the necessary spatial and temporal scales (Bayat 
et al., 2021; Kool et al., 2014; Talsma et al., 2018).

Plant gas exchange measurements in the field provide accurate T data at leaf or branch level (e.g., Sabater 
et al., 2020), but are difficult to scale and monitor continuously. Isotope-based methods can be used to unravel 
the T components of ET and provide information at ecosystem scale (Williams et al., 2004), but are expensive and 
require additional information for end-member analysis. Most commonly, the validation of T products involves 
the use of latent heat flux measurements from eddy covariance, basin-level water balances, soil lysimeters or soil 
water balance approaches—yet all these methods involve explicit assumptions regarding the partitioning of ET. 
Carbonyl-sulphide flux (Whelan et al., 2018) and solar-induced fluorescence (Maes et al., 2020) measurements 
have also been used to independently evaluate T products, however both rely on physiological modeling assump-
tions to derive T.

On the other hand, sap flow (SF) measurements are a promising source of information to directly evaluate T prod-
ucts and model mechanisms (Poyatos et al., 2021; Stoy et al., 2019; K. K. Wang & Dickinson, 2012). At daily or 
longer time scales, average SF can be equated to T with minimal errors (Kool et al., 2014; Kumagai et al., 2009). 
To date, SF data have never been used to evaluate T products globally, due to limitations in data availability (Stoy 
et al., 2019). However, a new coordinated network of SF data (SAPFLUXNET; (Poyatos et al., 2016, 2021)) has 
recently generated the first quality-controlled SF data set at a global scale. SAPFLUXNET opens new oppor-
tunities to validate T products directly (Bright et al., 2022). However, new generalized procedures need to be 
developed to enable the comparison between tree level T and T at larger spatial scales (Nelson et al., 2020). SF is 
usually measured on a unit-sapwood-area basis, and scaling SF to tree level is a common procedure with known 
sources of uncertainty, requiring estimation of tree sapwood area and knowledge of wood thermal and anatomical 
traits (Flo et al., 2019; Forster, 2017). However, scaling tree-level SF to stand-level poses a more difficult chal-
lenge, as it requires within and between species replication of SF measurements to account for individual, size 
and species variations, as well as forest inventory and structure information to weigh the importance of trees of 
different sizes and species to stand SF (Čermák et al., 2004). Scaling from stand-level (hundreds of meters to a 
few kilometers) to global data sets spatial scales (10–50 km), requires further consideration of landscape hetero-
geneity, which increases uncertainty (Ford et al., 2007; Mackay et al., 2010). Consequently, the use of SF data to 
evaluate T products has so far been limited to few sites (Nelson et al., 2020).

In this study, we use the novel SAPFLUXNET data set to evaluate the GLEAM T product under different climate 
conditions, and explore potential mismatches between the two estimates of T. We develop a new procedure which 
shortcuts the challenges of scaling site SF to grid cell T by focusing on temporal mismatches rather than absolute 
values. We use SF data from >80 sites across the globe and analyze temporal mismatches between GLEAM and 
SAPFLUXNET to demonstrate the capacity of our new approach to contribute to validating global T products 
and testing their assumptions. While comparisons between grid-scale and individual scale T at individual sites 
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may be subject to large sources of systematic biases caused by lack of representativeness of the temporal trends 
in the sampled trees relative to the entire pixel, we propose here that, by analyzing a sufficient large number of 
sites under different environmental conditions, these systematic site-specific biases will average out allowing to 
identify general differences between the behavior of ground SF data and modeled T data. We assess, for days 
with low, median, and high transpiration values, (a) how GLEAM and SAPFLUXNET compare over time, (b) 
whether GLEAM and SAPFLUXNET sensitivity to vapor pressure deficit and radiation match, and (c) whether 
temporal mismatches between the products can be explained by site model parameters and meteorological condi-
tions. Although our analysis is limited to GLEAM, the generic approach that we present could easily be applied to 
validate other RS T products, as well as T fields and models from land-surface, climate and hydrological models.

2.  Material and Methods
2.1.  Sap Flow and Transpiration Data Sets

We use the SAPFLUXNET global database of tree SF (SFN v0.1.5; Poyatos et  al.,  2021). SAPFLUXNET 
contains half-hourly tree-level SF data and is accompanied by tree metadata (size, species, SF sensor type), site 
information (vegetation type, soil, elevation, etc) and local hydro-meteorological data. Normally, multiple trees of 
different species are sampled per site and SF data are given per unit xylem area, per unit leaf area or per tree. We 
use all SAPFLUXNET data available after filtering out sites which either (a) had non-native vegetation, (b) were 
affected by experimental manipulations or recent fire, or (c) had less than 6 months of data available, considering 
only months with at least 20 days of data. After this filtering, the total number of sites available was 83 and the 
total number of trees was 1,195 (Table S1 in Supporting Information S1).

We use the outputs from the GLEAM model (Martens et al., 2017; Miralles et al., 2011). GLEAM uses remote 
sensing data to calculate potential ET based on the Priestley and Taylor (1972) model. Potential ET is converted 
into actual ET using models of water stress derived from vegetation optical depth and root-zone soil moisture; 
the latter is calculated based on retrievals of precipitation and surface soil moisture. This procedure is applied 
at a daily time step to each land fraction of a 0.25° (∼25 km at equator) grid cell (water, soil, short, and tall 
vegetation); these fractions are derived based on the Moderate Resolution Imaging Spectroradiometer product 
MOD44B (DiMiceli et al., 2015). For each grid cell, the contribution per land fraction is then aggregated, and 
rainfall interception based on the (Gash, 1979) model is added to yield the total ET. Here, we use the GLEAM 
v3.5b tall vegetation T product. For each SAPFLUXNET site, we extracted the GLEAM time series from the 
corresponding 0.25° grid-cell.

2.2.  Meteorological Data

To describe the sensitivity of SAPFLUXNET and GLEAM to environmental drivers and site climate, we obtain 
time series of mean monthly incoming surface solar radiation (S↓), air temperature and vapor pressure deficit 
(VPD) from 2003 to 2018 for each site. For S↓ and air temperature we use the ERA5 reanalysis (Hersbach 
et al., 2020; 0.36° resolution) at the monthly time scale. We calculate VPD from the CRUJRA monthly data set 
of air vapor pressure and air temperature (Harris et al., 2020; 0.5° resolution) after standardizing it to each site 
elevation.

2.3.  Scaling Sap Flow Temporal Patterns From Tree to Site

To scale SF temporal variability from tree level to stand level, we first average hourly to daily SF for each tree 
after filtering out nighttime data. We define nighttime as any hour in which solar altitude—the angle between 
the sun and the horizon—is lower than 0°. We calculate solar altitude for each hour using the site latitude, 
longitude and astronomical geometry (Michalsky, 1988) using the “sunAngle” method in the R package “oce” 
(Kelley & Richards, 2020). We then standardize the daily average SF per tree by calculating its Z-score (i.e., 
subtracting the mean and dividing by the standard deviation of the entire time series; Figures 1a and 1b). Z-scores 
remove differences in absolute values across sites while preserving information on temporal variability, facili-
tating comparisons among heterogeneous samples. Therefore, this standardization has the effect of removing 
size- and species-dependent effects on SF mean and variance, while retaining the full temporal variability of the 
data. We then scaled SF temporal variability to site level by averaging the standardized SF of all trees for each 
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Figure 1.
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site (Figure 1c). We performed the same experiments using diameter-at-breast height weighted mean but found 
no differences in results and thus decided to report site-level scaling using mean only.

2.4.  Extraction of Low, Median and High Transpiration and Sap Flow Days

To evaluate the agreement between GLEAM and SAPFLUXNET for days with contrasting conditions, we extract 
T and SF values representative of days with low, median and high T and SF conditions. We first quantify the 
monthly distribution, for each site, of SF and T using R's base function quantile with default arguments (i.e., 
method 7 of Hyndman & Fan, 1996, based on modal position). Then, from each distribution of SF and T, we 
extracted the 5th, 50th, and 95th percentiles of T and SF (Figures 1c–1f). The resulting time series reflect the 
monthly dynamics of the days with low, median and high T and SF. Then, for each site-level time series of 
monthly percentiles, we standardize the values by calculating Z-scores so that T and SF temporal variability 
could be compared (Figures 1e–1h). This is the same process used to standardize tree-level SF values within a site 
(see previous section). Here, the Z-score standardization removes any information on absolute values from both 
SF and T, so that the variability in SF and T is now in the same scale (i.e., standard deviation units) and can be 
directly compared. Hereafter, we refer to these Z-score standardized values as GLEAM-T and SAPFLUXNET-SF 
consistently. A flowchart with the data processing steps above is presented in Figure S1 of the Supporting 
Information S1.

2.5.  Site Level GLEAM and SAPFLUXNET Agreement Indexes

For each site, we calculate two indices to evaluate how well GLEAM-T matches SAPFLUXNET-SF over time: 
(a) the root mean squared difference (RMSD) of T in relation to SF (Figure S2c in Supporting Information S1) 
and (b) the bivariate correlation between T and SF (r—the Pearson's correlation). Both indices were calculated 
for each of the time series (i.e., low, median and high T and SF percentiles).

2.6.  Sensitivity to Vapor Pressure Deficit and Solar Radiation

For each site, we calculate the sensitivity of T and SF to VPD and S↓, by fitting the data using a linear mixed-effect 
model (Zuur et al., 2009), with VPD and S↓ having both a fixed effect on T or SF (first two terms on right-hand 
side on Equations 1 and 2, overall intercept and slope), as well as a random effect depending on site (two terms 
following the vertical bar, indicating that intercepts (the 1s) and slopes vary by site):

1.	 �T or SF = a + b*VPD + (1 + VPD|site)
2.	 �T or SF = a + b* S↓ + (1 + S↓|site)

Mixed-effects models produce both population-level estimates of the mean intercepts and slopes for all sites, 
as well as site-level estimates of these same quantities (best linear unbiased predictions). These site-dependent 
intercepts and slopes of the response functions against VPD or S↓, allow us to compare T versus SF sensitivities 
across sites. VPD and S↓ values were centered prior to use in the model. Procedures for fitting the linear mixed 
models are the same as those used in hypothesis testing and described in the next section. We calculate the VPD 
or S↓ sensitivity mismatch (VPDsm and S↓sm), for each site, as GLEAM-T`s sensitivity to VPD or S↓ minus the site 
SAPFLUXNET-SF sensitivity to VPD or S↓.

2.7.  Analysis

We evaluate whether GLEAM-T scales proportionally to SAPFLUXNET-SF and whether the scaling is differ-
ent among days with low, median and high transpiration (i.e., whether the scaling relationship changes with 
the percentile analyzed) using standardized major axis regression (SMA; Smith, 2009). We focus particularly 
on whether the scaling relationship is consistent with a 1:1 relationship (slope of 1) as deviations from this 

Figure 1.  Example of processing of individual tree sap flow (SF) (SAPFLUXNET) and transpiration (Global Land Evaporation Amsterdam Model (GLEAM)) to yield 
standardized ecosystem SF and standardized transpiration. For SAPFLUXNET site AUS_WOM (37.42°S, 144.09°E; Melbourne, Australia). (a) Daily SF for 11 trees 
(each color representing one tree) at the site; (b) Standardized (Z-score) SF for the 11 trees. (c) Site-level daily SF, calculated as the average of the standardized SF for 
the 11 trees; (d) GLEAM daily tall vegetation T for the grid cell containing the site AUS_WOM; (e and f) Monthly percentiles (5th, 50th and 95th; blue, orange, and 
red, respectively) of SF (e) and T (f), hereafter designated as SAPFLUXNET-SF and GLEAM-T, calculated from the monthly distribution of daily values in (c) and (d). 
The percentiles represent, in each month, conditions of days with low, median and high SF and T. (g and h) Standardized (Z-scores) monthly SF and T percentiles (i.e., 
in number of standard deviations, SD). A flowchart with the steps used in the data processing are presented on Figure S1 in Supporting Information S1.

 21698961, 2023, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JG

007308 by U
niversity O

f E
xeter, W

iley O
nline L

ibrary on [17/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Journal of Geophysical Research: Biogeosciences

BITTENCOURT ET AL.

10.1029/2022JG007308

6 of 12

relationship would indicate biases at low or high T. We then test whether 
site-level indices of mismatching between T and SF (RMSD and r) are differ-
ent for different percentiles using a mixed-effect model. In this model, the 
mismatching indices are the response variable, the percentile is the fixed 
effect and site is a random effect on the intercept. The random effect on the 
intercept allows pairing percentiles by site and controlling for site effects.

We use the same approach as above, SMA, to evaluate how VPDsm and S↓sm 
scale and whether the scaling is affected by percentiles. Moreover, we eval-
uate whether mismatches between GLEAM-T and SAPFLUXNET-SF were 
explained by site climatology (long-term site-averages of VPD, S↓, temper-
ature and precipitation) and GLEAM input variables (S, potential and actual 
ET) using linear fixed effect models. For site climatology indexes, we use 
principal component analysis (PCA) to collapse the variables into princi-
pal components as they were highly correlated. We evaluate the first and 
second PCA axis capacity to explain variability of the mismatch indices for 
the different percentiles. We interpret each PCA axis based on the weight of 
the individual variables composing it.

We used the R programming environment (v3.6; R Core Team, 2019) for 
all analysis and data processing; R base package for linear fixed-effects 
models (function “lm”) and PCA (function “prcomp”); the SMATR3 pack-

age (Warton et al., 2012) for SMA analysis; the NLME package (Pinheiro et al., 2020) for mixed-effect models. 
We followed the guidelines of Zuur et al. (2009) and Thomas et al. (2017) for assessing significance of model 
terms, validating model assumptions and verifying model sensitivity to outliers using Cook's distance. We tested 
for significance of fixed variables in mixed-effect models using likelihood ratio tests between the model with and 
without the fixed effect.

3.  Results
3.1.  GLEAM and SAPFLUXNET Scaling and Occurrence of Temporal Mismatches

Analyzing the agreement between GLEAM-T and SAPFLUXNET-SF using standardized major-axis regression, 
we found their temporal variability scales with a slope of 1.06 ± 0.007 (mean ± confidence interval here and in 
following values) and with an intercept of 0.20 ± 0.008 (p < 0.001; Figure 2). This indicates a reasonable match 
in temporal patterns between GLEAM-T and SAPFLUXNET -SF, despite a high overall variability (R 2 = 0.30). 
The scaling for days with low, median and high transpiration (i.e., the 5th, 50th and 95th percentiles—P05, P50, 
and P95) differed across percentiles (p < 0.001; Figure 3). The percentiles had significantly different slopes 
(0.94 ± 0.03, 1.03 ± 0.04, and 1.01 ± 0.04 for P05, P50, and P95, respectively; p < 0.001) and the intercept of the 
relationship was close to zero for all percentiles (−0.04 ± 0.04, −0.004 ± 0.04, and −0.003 ± 0.03 for P05, P50, 
and P95). Their agreement explained 32% of the variability of P05, 39% of P50 and 34% of P95. These results 
indicate that GLEAM-T captures the overall SAPFLUXNET -SF temporal variability, but the match differs for 
different transpiration conditions as shown by the slope between SAPFLUXNET-SF and GLEAM-T being lower 
than one for low transpiration conditions. We also found this result to be robust when accounting for the influence 
of trees of different sizes on site SF, by using a weighted mean instead of simple mean to calculate site SF (i.e., 
from Figures 1b and 1c; data not shown).

We tested whether site-level statistics of the match between the variability of GLEAM-T and SAPFLUXNET-SF 
(root mean squared deviation, RMSD and bivariate correlation, r) were different across percentiles (Figures 4a–4c). 
We found RMSD of the P50 to be 0.18 ± 0.01, which is 10.4% and 9.5% lower than the RMSD of P05 and P95 (p 
<= 0.03; Figure 4a). Similarly, the bivariate correlation of SF and T (r) was greater for the P50 (0.62) and lower 
for the P05 and P95 (0.54 and 0.56; p <= 0.01; Figure 4c), indicating GLEAM-T has a better temporal match to 
SAPFLUXNET-SF under median conditions.

3.2.  Differences in Sensitivity to VPD and S↓ Between GLEAM-T and SAPFLUXNET -SF

We analyzed how site-specific sensitivities of GLEAM-T and SAPFLUXNET-SF to VPD and S↓ relate to each 
other and whether this relationship was different across daily conditions with low, median and high transpiration, 

Figure 2.  SAPFLUXNET-SF as a function of GLEAM-T variability for all 
daily points combined. Values are Z-scores for daily mean values of sap flow 
and transpiration; data point color indicates the count of data point in each 
0.05 bin. R 2 is the coefficient of determination of the standardized major axis 
regression model. The black line is the model fit and the dashed line marks 
the 1:1 relationship. The scaling slope of the relationship is 1.06 ± 0.007 
(mean ±95% confidence interval).
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using SMA. Our results show sensitivity to VPD scaled with a similar slope of 0.76 for all percentiles (p = 0.15 
for slope differences across percentiles; Figure 5a), but with different intercepts of −0.34, 0.14, and 0.07 for P05, 
P50, and P95 (p < 0.001), causing GLEAM-T sensitivity to VPD to approach SAPFLUXNET -SF sensitivity at 
lower VPD sensitivity sites. The scaling between GLEAM-T and SAPFLUXNET-SF sensitivity to VPD is signif-
icant for all percentiles (p < 0.001) and explained 39%, 49%, and 49% of the variability in the relationship for P05, 
P50, and P95. The VPD sensitivity mismatch (VPDsm) is higher for P05 than P50 and P95 (p < 0.001; Figure 4c) 
but was always above 0, indicating a higher VPD sensitivity overall for GLEAM-T across all percentiles.

Regarding radiation responses, GLEAM-T and SAPFLUXNET -SF show again a good scaling to the 1:1 line, 
with a slope of 0.91 for all percentiles (p = 0.87; Figure 5b). The intercepts were significantly different across the 
percentiles (−0.030, −0.008, and −0.008 for P05, P50, and P95; p < 0.001). The S↓ sensitivity mismatch (S↓sm) 
increases from P95 to P05 (p < 0.01; Figure 4d).

Figure 3.  SAPFLUXNET-SF as a function of GLEAM-T. Graphs (a, b, and c) are, respectively, low, median and high transpiration daily values within a month and site 
(i.e., the 5th, 50th and 95th monthly percentiles of daily values). Data point color indicates the count of data point in each 0.1 bin. R 2 is the coefficient of determination 
of the standardized major axis regression model with sap flow scaling with transpiration and percentile as a covariate affecting the slope of the scaling. The black line is 
the model fit and the dashed line marks the 1:1 relationship.

Figure 4.  Site level mismatching indices between GLEAM-T and SAPFLUXNET-SF for the 5th, 50th, and 95th monthly percentiles (P5, P50, and P95; blue, orange, 
and red, respectively): (a) mean root squared difference (RMSD), (b) bivariate correlation (r), (c) vapor pressure deficit sensitivity mismatch (VPDsm) and (d) and 
incoming solar radiation sensitivity mismatch (S↓sm). Groups with different letters in are significantly different from each other at least at p < 0.05 in a mixed model 
with site as random effect and percentile as fixed effect.
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3.3.  Drivers of Mismatches Between GLEAM-T and SAPFLUXNET-SF

We evaluated whether mismatches between GLEAM-T and SAPFLUXNET 
-SF (RMSD and r), and their VPDsm and S↓sm, were related to site-level 
climate data (VPD, S↓, air temperature, and precipitation) or model variables 
(potential ET, actual ET, and GLEAM's stress factor S). To simplify the anal-
ysis, we collapsed the predictor variable space onto two PCA axes (Figure 6). 
The first and second axis of the PCA (PC1 and PC2) explained most of the 
data set variability (50% and 38%) and we restricted our analysis to these 
axes. PC1 inversely reflected variables which control a site's evaporative 
demand (VPD, S↓ and temperature) while the PC2 directly water limitation 
related variables (precipitation and actual ET; Table  1). GLEAM's water 
stress factor and potential ET were distributed across both axes. We found 
the different predictors of mismatch between GLEAM-T and SAPFLUXNET 
-SF to be related to both the first and the second PCA axes (Table 2). The 
GLEAM-T to SAPFLUXNET-SF bivariate correlation for all percentiles 
and the VPDsm for the P5 and P95 increase with PC1 (i.e., they decrease 
with increased evaporative demand). RMSD, VPDsm and S↓sm increased with 
PC2 (i.e., site actual ET and precipitation). Our results indicate GLEAM-T 
mismatches relative to SAPFLUXNET-SF are not random and are related to 
site level differences in evaporative demand and water availability, generally 
increasing with them. However, the way in which both site level evaporative 
demand and water availability influenced the GLEAM-T versus SAPFLUX-
NET -SF mismatches varied depending on the percentile analyzed (P5, P50, 
P95). This suggests the driver was often different for different transpiration 
conditions and, thus, the capacity of GLEAM to capture T is not the same for 
mean and extreme, low and high, T conditions.

4.  Discussion
Evaluating T products has been a major challenge preventing improvements 
in our capabilities to understand and predict water and energy dynamics 
(Stoy et  al.,  2019). While the use of SF has been proposed as a mean to 
evaluate T data sets, constraints in spatially scaling these fluxes have limited 
these evaluations to a handful of sites globally (Nelson et al., 2020). Using 
the recently assembled and quality-controlled SAPFLUXNET database 
(Poyatos et al., 2021), combined with a novel approach to allow stand-scale 
comparisons to global T products, we provided the first global evaluation 
of a widely used transpiration model—GLEAM (Martens et al., 2017). Our 
new technique can be used to infer GLEAM-T and SAPFLUXNET-SF have 
a strong temporal agreement (Figures 2 and 3) with a scaling close to 1:1 and 

an intercept close to 0. Interestingly, days with different transpiration levels scale differently, with low transpira-
tion days scaling with a slope of 0.94, leading to higher mismatches at extreme values. Therefore, the mismatch 
will be greater for extreme low and high transpiration conditions within a site and between sites with different 
conditions, highlighting the limitations of T products to capture extreme patterns (Feng et al., 2020; Miralles 
et al., 2016; Talsma et al., 2018).

Our work has shown that a quality controlled, standardized, SF product can be used for large-scale evaluation of 
the temporal trends in T products at monthly time scales. While the analysis of temporal patterns constitutes only 
a partial validation of a product, it provides valuable information on mechanisms which should be targeted for 
product improvement. Our results show, for example, days with low transpiration to be particularly problematic 
for GLEAM's current model. GLEAM-T generally captures the VPD and S↓ sensitivities well, but overestimates 
them slightly but systematically relative to SAPFLUXNET-SF (Figures 4d and 4e), especially for low transpiration 
conditions. Lower agreement between GLEAM and eddy-covariance data in arid conditions has been reported 
previously (Michel et al., 2016) and are often related to inaccurate plant stomatal control mechanisms or improper 

Figure 5.  Relationships between GLEAM-T and SAPFLUXNET-SF 
sensitivities to vapor pressure deficit (VPD; a) and surface solar radiation (S↓; 
b). Blue, orange, and red points indicate, respectively, daily conditions, within 
months, with low, median, and high T (or sap flow) (i.e., 5th, 50th, and 95th 
monthly percentiles of daily values, P5, P50, and P95, respectively). Each 
point is a different site. Sensitivity is the slope of the relationship between 
GLEAM-T (or SAPFLUXNET-SF) and site VPD (or S↓) (i.e., a value of 1 
indicates T increases by one standard deviation per 1 kPa increase in VPD). 
Colored lines are the standardized major axis fits for each percentile and the 
black dashed line is the 1:1 line.
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root zone water availability (Feng et al., 2020; Liu et al., 2020). However, 
to our knowledge, this is the first time T mismatches under low evaporative 
conditions have been identified generally. Ultimately, the fact that GLEAM 
is overly responsive to radiation under low transpiration conditions relates 
to the use of the Priestley and Taylor formulation, which has difficulties to 
properly capture ET at low radiation conditions (Ford et al., 2007; Miralles 
et al., 2016). While solar radiation and temperature (which drive the Priestley 
and Taylor model) account for most of the variability in atmospheric demand, 
air humidity and wind speed also have some influence (Penman, 1948). This 
could be the cause of the mismatches in RMSD and VPD and S↓ sensitivities 
increasing with site energy-availability (Table 2). Our new method highlights 
these biases as potential targets for further model development. Such devel-
opment is particularly significant considering the importance of ensuring 
these products capture extreme values of transpiration correctly, given the 
likelihood that extreme values of transpiration are likely to increase globally 
(Diffenbaugh et al., 2017) and the fact that RS products are used to evaluate 
global climate models (Z. Z. Wang et al., 2021).

Our tree-to-grid cell scaling approach does however have limitations—
analysis is restricted to relative temporal trends rather than absolute values. 
Our work also assumes SF sensor data is equally accurate at different tran-
spiration conditions, which may not be true (Flo et al., 2019). Using tempo-
ral trends of SF and T also cannot address issues of spatial mismatches 
between the products (often 0.25° for GLEAM-T vs. one site/forest for 
SAPFLUXNET-T), which could be driving some of the disagreements 
between the products if site values are not representative of the broader 
landscape dynamics within that grid cell. Furthermore, it is possible that 
unmeasured trees have a different temporal dynamics compared to measured 

trees. All these sources of potential error should cause site-specific differences in temporal patterns. Given a 
sufficiently large number of sites however, such as used in this study, the differences are expected to be random, 
rather than creating the systematic mismatches we observe, which are instead related to climatic variables and 
GLEAM model parameterization (Table 2). Consequently, with our approach confidence in conclusions reached 
for specific sites is limited, but cross-site analyses are likely to be robust.

5.  Conclusions
Our work provides an initial template which could be expanded to evaluate 
other remote sensing based or T products, or T estimates from land surface 
and hydrological models. Other types of analyses, such as time lags between 
driver and T response and spatial correlations analysis, could provide valu-
able insights into evaluating other types of mismatches. A bridge between 
our approach, based on temporal trends, to an approach based on absolute SF 
values, such as done by Nelson et al. (2020), could be done by a joint compar-
ison of both methods for those sites where sufficient data are available for 
this analysis. Future expansion of SF monitoring in a controlled and stand-
ardized way, particularly if paired with eddy-covariance towers, could greatly 
improve our capacity to utilize SF data to evaluate T products and optimize 
merging of different products (Jiménez et al., 2018). Models behind global 
T products usually assume parameters are constant, which is an incorrect 
but necessary assumption, given the lack of data needed to monitor param-
eter stationarity (Stephens et al., 2021). Improved capabilities of evaluating 
T products, such as a global SF network, may also provide means to monitor 
how ongoing changes in vegetation structure and physiological acclimation 
to climate change may be shifting the parameters embedded in T products. 

Figure 6.  Principal component analysis of site climatic (vapor pressure 
deficit, incoming solar radiation, air temperature and precipitation) and model 
variables (potential and actual ET, and their ratio, i.e., S). The loadings of each 
variable into the PC1 and PC2 axis, as well as their contribution, are presented 
in Table 1. The gray circle is the correlation circle marking the correlation 
between variables and principal components.

Table 1 
Variable Loadings and Percentage Contributions to the First and Second 
Axis of the Principal Component Analysis (PC1 and PC2) of the Climatic 
and Model Variables Studied

PC1 PC2

Loading Contribution Loading Contribution

VPD −0.49 24.0 −0.11 1.1

Temperature −0.44 19.7 0.26 7.0

S↓ −0.50 24.6 0.02 0.1

Precipitation 0.20 3.9 0.48 23.5

ETp −0.39 15.0 0.40 16.0

ET −0.02 0.1 0.60 35.8

S 0.36 12.8 0.41 16.6

Note. VPD, mean vapor pressure deficit; S↓, total monthly incoming net 
surface solar radiation (MJ m −2); Temp, mean surface temperature; Prec., 
mean precipitation; ET and ETp, GLEAM mean actual ET and potential 
ET; S, mean GLEAM evaporative stress factor (S equal to one equates to no 
stress). Site climatic data from ERA5 and CRUJRA products for the period 
2001–2020. Variables with high loading/contributions for each axis are 
highlighted in bold.
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We believe the initial steps we provide here can be the foundation for a wider SF based validation of T products, 
models and mechanisms.
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