496 research outputs found

    STUDIES ON NUTRITIONAL PROFILE AND ANTIOXIDANT POTENTIAL OF DIFFERENT DIOSCOREA SP WITH PLECTRANTHUS ROTUNDIFOLIUS

    Get PDF
    Objective: Protection from oxidative damage to the tissues is provided by natural or synthetic antioxidants. Because of the multiple mechanisms of actions and presence of various phytochemicals, plant-based antioxidants are preferred. Dioscorea is well known as a traditional edible tuber. The present study was undertaken to explore and highlights the nutritional benefits and to evaluate the in vitro antioxidant and free radical scavenging capacity of ethanolic extract of three different underutilised Dioscorea species (D. alata, D. pentaphylla and D. oppositifolia) with a common cultivated crop, Plectranthus rotundifolius.Methods: Different processing methods are adopted to assess their influence on nutritive value and antioxidant properties. Tubers were studied for proximate composition using standard analytical methods. Mineral elements were analysed using ICP-MS (Inductively Coupled Plasma-Mass Spectrometer). Antioxidant potential of raw and processed samples was determined using a range of in vitro models.Results: The presence of essential minerals such as Na, K, Ca, P, Zn and Mn were observed. High radical scavenging activity was observed in the tubers of Dioscorea. Results indicated that phenolic compounds are the significant contributors to the antioxidant activity.Conclusion: Current study suggests that Dioscorea might be a promising natural antioxidant and could be very useful health food, as they enhance the antioxidant defence system. It also proposes that underutilized tubers can efficiently contribute to the nutritional requirement and food security.Â

    Food prospects and nutraceutical attributes of Momordica species: A potential tropical bioresources – A review

    Get PDF
    AbstractPlants with potential therapeutic values have been used from time immemorial to cure various ailments and infectious diseases. Of late, scientific evidences have been provided on the potential therapeutic agent exhibited by certain traditionally used vegetable extracts. The importance of wild edible plants may be traced to antiquity but systemic studies are recent. All the Momordica species have been consumed as vegetable and traditionally used for various disorders. The whole plant parts are ascribed to possess the anti-diabetic effect in traditional medicinal system. The active constituents of Momordica plant parts were cucurbitane type triterpenoids, phenolics, glycosides, and several kinds of peptides including Momordica anti-HIV protein (MAP 30). Recent reports revealed the presence of several kinds of cucurbitane type triterpenoids in leaf, stem and fruits of Momordica species having several pharmacological activities. There is lack of scientific information available on the wild species which also having several bioactive components with potential activities. So the present review compares and highlights the current knowledge of the nutritional value, phytochemistry and physiological effects of wild species with known variety

    Effect of Different Parts (Leaf, Stem and Stalk) and Seasons (Summer and Winter) on the Chemical Compositions and Antioxidant Activity of Moringa oleifera

    Get PDF
    Moringa oleifera, Lam. (Moringaceae) is grown world-wide in the tropics and sub-tropics of Asia and Africa and contains abundant various nutrients. This study describes the effect of different parts (leaf, stem and stalk) and seasons (summer and winter) on the chemical compositions and antioxidant activity of M. oleifera grown in Taiwan. The results showed that the winter samples of Moringa had higher ash (except the stalk part), calcium and phenolic compounds (except the leaf part) and stronger antioxidative activity than summer samples. The methanolic extract of Moringa showed strong scavenging effect of DPPH radicals and reducing power. The trend of antioxidative activity as a function of the part of Moringa was: leaf > stem > stalk for samples from both seasons investigated. The Moringa extract showed strong hydrogen peroxide scavenging activity and high Superoxide Dismutase (SOD) activity except the stalk part

    Bio-augmentation of antioxidants and phenolic content of Lablab purpureus by solid state fermentation with GRAS filamentous fungi

    Get PDF
    The present study was conducted to find out the effect of solid state fermentation on release of phenolics and subsequently on improvement of antioxidant activity of fermented seed and flour of Lablab purpureus (seim), using GRAS filamentous fungi i.e. Aspergillus awamori and Aspergillus oryzae. Significant increase in TPC level was observed on 5th day of fermentation of seed and flour with A. awamori and A. oryzae as compared to non-fermented ones. In DPPH and ABTS antioxidant assay, maximum activity was noticed in fermented ethanolic extract of seim seed with A. awamori and A. oryzae on 3rd and 4th day of incubation, respectively. The findings showed higher antioxidant activity formation in fermented seim seed than flour. Significant increase in enzyme activity of α-amylase was also contributed by SSF. This study demonstrated that fermented seed and flour of seim are better source of phytochemicals compared to the non-fermented ones

    Evaluation of Physicochemical and Antioxidant Properties of Peanut Protein Hydrolysate

    Get PDF
    Peanut protein and its hydrolysate were compared with a view to their use as food additives. The effects of pH, temperature and protein concentration on some of their key physicochemical properties were investigated. Compared with peanut protein, peanut peptides exhibited a significantly higher solubility and significantly lower turbidity at pH values 2–12 and temperature between 30 and 80°C. Peanut peptide showed better emulsifying capacity, foam capacity and foam stability, but had lower water holding and fat adsorption capacities over a wide range of protein concentrations (2–5 g/100 ml) than peanut protein isolate. In addition, peanut peptide exhibited in vitro antioxidant properties measured in terms of reducing power, scavenging of hydroxyl radical, and scavenging of DPPH radical. These results suggest that peanut peptide appeared to have better functional and antioxidant properties and hence has a good potential as a food additive

    Antioxidant potential of bitter cumin (Centratherum anthelminticum (L.) Kuntze) seeds in in vitro models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bitter cumin (<it>Centratherum anthelminticum </it>(L.) Kuntze), is a medicinally important plant. Earlier, we have reported phenolic compounds, antioxidant, and anti-hyperglycemic, antimicrobial activity of bitter cumin. In this study we have further characterized the antioxidative activity of bitter cumin extracts in various in vitro models.</p> <p>Methods</p> <p>Bitter cumin seeds were extracted with a combination of acetone, methanol and water. The antioxidant activity of bitter cumin extracts were characterized in various <it>in vitro </it>model systems such as DPPH radical, ABTS radical scavenging, reducing power, oxidation of liposomes and oxidative damage to DNA.</p> <p>Results</p> <p>The phenolic extracts of bitter cumin at microgram concentration showed significant scavenging of DPPH and ABTS radicals, reduced phosphomolybdenum (Mo(VI) to Mo(V)), ferricyanide Fe(III) to Fe(II), inhibited liposomes oxidation and hydroxyl radical induced damage to prokaryotic genomic DNA. The results showed a direct correlation between phenolic acid content and antioxidant activity.</p> <p>Conclusion</p> <p>Bitter cumin is a good source of natural antioxidants.</p

    Data S1: Raw data compilation

    Get PDF
    N-Acetyl-p-Aminophenol (APAP), also known as acetaminophen, is the most commonly used over-the counter analgesic and antipyretic medication. However, its overdose leads to both liver and kidney damage. APAP-induced toxicity is considered as one of the primary causes of acute liver failure; numerous scientific reports have focused majorly on APAP hepatotoxicity. Alternatively, not many works approach APAP nephrotoxicity focusing on both its mechanisms of action and therapeutic exploration. Moringa oleifera (MO) is pervasive in nature, is reported to possess a surplus amount of nutrients, and is enriched with several bioactive candidates including trace elements that act as curatives for various clinical conditions. In this study, we evaluated the nephro-protective potential of MO leaf extract against APAP nephrotoxicity in male Balb/c mice. A single-dose acute oral toxicity design was implemented in this study. Group 2, 3, 4 and 5 received a toxic dose of APAP (400 mg/kg of bw, i.p) and after an hour, these groups were administered with saline (10 mL/kg), silymarin—positive control (100 mg/kg of bw, i.p), MO leaf extract (100 mg/kg of bw, i.p), and MO leaf extract (200 mg/kg bw, i.p) respectively. Group 1 was administered saline (10 mL/kg) during both the sessions. APAP-treated mice exhibited a significant elevation of serum creatinine, blood urea nitrogen, sodium, potassium and chloride levels. A remarkable depletion of antioxidant enzymes such as SOD, CAT and GSH-Px with elevated MDA levels has been observed in APAP treated kidney tissues. They also exhibited a significant rise in pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) and decreased anti-inflammatory (IL-10) cytokine level in the kidney tissues. Disorganized glomerulus and dilated tubules with inflammatory cell infiltration were clearly observed in the histology of APAP treated mice kidneys. All these pathological changes were reversed in a dose-dependent manner after MO leaf extract treatment. Therefore, MO leaf extract has demonstrated some therapeutic effectiveness against APAP-induced nephrotoxicity through enhancement of the endogenous antioxidant system and a modulatory effect on specific inflammatory cytokines in kidney tissues
    corecore