5,980 research outputs found

    Gain control network conditions in early sensory coding

    Get PDF
    Gain control is essential for the proper function of any sensory system. However, the precise mechanisms for achieving effective gain control in the brain are unknown. Based on our understanding of the existence and strength of connections in the insect olfactory system, we analyze the conditions that lead to controlled gain in a randomly connected network of excitatory and inhibitory neurons. We consider two scenarios for the variation of input into the system. In the first case, the intensity of the sensory input controls the input currents to a fixed proportion of neurons of the excitatory and inhibitory populations. In the second case, increasing intensity of the sensory stimulus will both, recruit an increasing number of neurons that receive input and change the input current that they receive. Using a mean field approximation for the network activity we derive relationships between the parameters of the network that ensure that the overall level of activity of the excitatory population remains unchanged for increasing intensity of the external stimulation. We find that, first, the main parameters that regulate network gain are the probabilities of connections from the inhibitory population to the excitatory population and of the connections within the inhibitory population. Second, we show that strict gain control is not achievable in a random network in the second case, when the input recruits an increasing number of neurons. Finally, we confirm that the gain control conditions derived from the mean field approximation are valid in simulations of firing rate models and Hodgkin-Huxley conductance based models

    Etiology of Severe Non-malaria Febrile Illness in Northern Tanzania: A Prospective Cohort Study.

    Get PDF
    The syndrome of fever is a commonly presenting complaint among persons seeking healthcare in low-resource areas, yet the public health community has not approached fever in a comprehensive manner. In many areas, malaria is over-diagnosed, and patients without malaria have poor outcomes. We prospectively studied a cohort of 870 pediatric and adult febrile admissions to two hospitals in northern Tanzania over the period of one year using conventional standard diagnostic tests to establish fever etiology. Malaria was the clinical diagnosis for 528 (60.7%), but was the actual cause of fever in only 14 (1.6%). By contrast, bacterial, mycobacterial, and fungal bloodstream infections accounted for 85 (9.8%), 14 (1.6%), and 25 (2.9%) febrile admissions, respectively. Acute bacterial zoonoses were identified among 118 (26.2%) of febrile admissions; 16 (13.6%) had brucellosis, 40 (33.9%) leptospirosis, 24 (20.3%) had Q fever, 36 (30.5%) had spotted fever group rickettsioses, and 2 (1.8%) had typhus group rickettsioses. In addition, 55 (7.9%) participants had a confirmed acute arbovirus infection, all due to chikungunya. No patient had a bacterial zoonosis or an arbovirus infection included in the admission differential diagnosis. Malaria was uncommon and over-diagnosed, whereas invasive infections were underappreciated. Bacterial zoonoses and arbovirus infections were highly prevalent yet overlooked. An integrated approach to the syndrome of fever in resource-limited areas is needed to improve patient outcomes and to rationally target disease control efforts

    A review of mineral carbonation technologies to sequester CO2

    Get PDF

    Observed Reductions in Schistosoma mansoni Transmission from Large-Scale Administration of Praziquantel in Uganda: A Mathematical Modelling Study

    Get PDF
    To date schistosomiasis control programmes based on chemotherapy have largely aimed at controlling morbidity in treated individuals rather than at suppressing transmission. In this study, a mathematical modelling approach was used to estimate reductions in the rate of Schistosoma mansoni reinfection following annual mass drug administration (MDA) with praziquantel in Uganda over four years (2003-2006). In doing this we aim to elucidate the benefits of MDA in reducing community transmission.Age-structured models were fitted to a longitudinal cohort followed up across successive rounds of annual treatment for four years (Baseline: 2003, TREATMENT: 2004-2006; n = 1,764). Instead of modelling contamination, infection and immunity processes separately, these functions were combined in order to estimate a composite force of infection (FOI), i.e., the rate of parasite acquisition by hosts.MDA achieved substantial and statistically significant reductions in the FOI following one round of treatment in areas of low baseline infection intensity, and following two rounds in areas with high and medium intensities. In all areas, the FOI remained suppressed following a third round of treatment.This study represents one of the first attempts to monitor reductions in the FOI within a large-scale MDA schistosomiasis morbidity control programme in sub-Saharan Africa. The results indicate that the Schistosomiasis Control Initiative, as a model for other MDA programmes, is likely exerting a significant ancillary impact on reducing transmission within the community, and may provide health benefits to those who do not receive treatment. The results obtained will have implications for evaluating the cost-effectiveness of schistosomiasis control programmes and the design of monitoring and evaluation approaches in general

    Biomimetic Synthesis of Gelatin Polypeptide-Assisted Noble-Metal Nanoparticles and Their Interaction Study

    Get PDF
    Herein, the generation of gold, silver, and silver–gold (Ag–Au) bimetallic nanoparticles was carried out in collagen (gelatin) solution. It first showed that the major ingredient in gelatin polypeptide, glutamic acid, acted as reducing agent to biomimetically synthesize noble metal nanoparticles at 80°C. The size of nanoparticles can be controlled not only by the mass ratio of gelatin to gold ion but also by pH of gelatin solution. Interaction between noble-metal nanoparticles and polypeptide has been investigated by TEM, UV–visible, fluorescence spectroscopy, and HNMR. This study testified that the degradation of gelatin protein could not alter the morphology of nanoparticles, but it made nanoparticles aggregated clusters array (opposing three-dimensional α-helix folding structure) into isolated nanoparticles stabilized by gelatin residues. This is a promising merit of gelatin to apply in the synthesis of nanoparticles. Therefore, gelatin protein is an excellent template for biomimetic synthesis of noble metal/bimetallic nanoparticle growth to form nanometer-sized device

    Brown-Vialetto-Van Laere and Fazio Londe syndrome is associated with a riboflavin transporter defect mimicking mild MADD: a new inborn error of metabolism with potential treatment

    Get PDF
    We report on three patients (two siblings and one unrelated) presenting in infancy with progressive muscle weakness and paralysis of the diaphragm. Metabolic studies revealed a profile of plasma acylcarnitines and urine organic acids suggestive of a mild form of the multiple acyl-CoA dehydrogenation defect (MADD, ethylmalonic/adipic acid syndrome). Subsequently, a profound flavin deficiency in spite of a normal dietary riboflavin intake was established in the plasma of all three children, suggesting a riboflavin transporter defect. Genetic analysis of these patients demonstrated mutations in the C20orf54 gene which encodes the human homolog of a rat riboflavin transporter. This gene was recently implicated in the Brown-Vialetto-Van Laere syndrome, a rare neurological disorder which may either present in infancy with neurological deterioration with hypotonia, respiratory insufficiency and early death, or later in life with deafness and progressive ponto-bulbar palsy. Supplementation of riboflavin rapidly improved the clinical symptoms as well as the biochemical abnormalities in our patients, demonstrating that high dose riboflavin is a potential treatment for the Brown-Vialetto-Van Laere syndrome as well as for the Fazio Londe syndrome which is considered to be the same disease entity without the deafnes

    MicroRNA profiling reveals that miR-21, miR486 and miR-214 are upregulated and involved in cell survival in Sézary syndrome

    Get PDF
    Sézary syndrome (SS) is an incurable leukemic variant of cutaneous T-cell lymphoma and its pathogenesis is still unknown. Diagnosis/prognosis may strongly ameliorate the management of SS individuals. Here, we profiled the expression of 470 microRNAs (miRNAs) in a cohort of 22 SS patients, and we identified 45 miRNAs differentially expressed between SS and controls. Using predictive analysis, a list of 19 miRNAs, including miR-21, miR-214, miR-486, miR-18a, miR-342, miR-31 and let-7 members were also found. Moreover, we defined a signature of 14 miRNAs including again miR-21, potentially able to discriminate patients with unfavorable and favorable outcome. We validated our data for miR-21, miR-214 and miR-486 by qRT-PCR, including an additional set of array-independent SS cases. In addition, we also provide an in vitro evidence for a contribution of miR-214, miR-486 and miR-21 to apoptotic resistance of CTCL cell line
    corecore