159 research outputs found

    Dengue Infection and Miscarriage: A Prospective Case Control Study

    Get PDF
    Dengue is the most prevalent mosquito-borne infection with two billion of the world's population at risk and 100 million infections every year. Dengue is increasingly important due to expansion in the vector's range, increased population density in endemic areas from urbanisation, social and environment change. Miscarriage and stillbirth is associated with dengue when the illness is severe. Dengue can also be transmitted directly from the ill mother through the placenta to the fetus in later pregnancy with variable effect to the fetus. However, dengue infection is asymptomatic to mild only in almost 90% of cases and up to 20% of pregnancies miscarry. Little is known if dengue infection in early pregnancy particularly when it is asymptomatic or mild has an effect on miscarriage. Our study explored the relationship between dengue and miscarriage by looking at recent infection rates amongst women who had miscarried and those whose pregnancies were healthy in an area were dengue is common. Our study finds a positive association between recent dengue infection and miscarriage. This finding may be important in explaining some of the miscarriages in areas where dengue is common. It is also relevant to newly pregnant women from non-dengue travelling to dengue endemic areas

    Mechanisms and role of microRNA deregulation in cancer onset and progression

    Get PDF
    MicroRNAs are key regulators of various fundamental biological processes and, although representing only a small portion of the genome, they regulate a much larger population of target genes. Mature microRNAs (miRNAs) are single-stranded RNA molecules of 20–23 nucleotide (nt) length that control gene expression in many cellular processes. These molecules typically reduce the stability of mRNAs, including those of genes that mediate processes in tumorigenesis, such as inflammation, cell cycle regulation, stress response, differentiation, apoptosis and invasion. MicroRNA targeting is mostly achieved through specific base-pairing interactions between the 5′ end (‘seed’ region) of the miRNA and sites within coding and untranslated regions (UTRs) of mRNAs; target sites in the 3′ UTR diminish mRNA stability. Since miRNAs frequently target hundreds of mRNAs, miRNA regulatory pathways are complex. Calin and Croce were the first to demonstrate a connection between microRNAs and increased risk of developing cancer, and meanwhile the role of microRNAs in carcinogenesis has definitively been evidenced. It needs to be considered that the complex mechanism of gene regulation by microRNAs is profoundly influenced by variation in gene sequence (polymorphisms) of the target sites. Thus, individual variability could cause patients to present differential risks regarding several diseases. Aiming to provide a critical overview of miRNA dysregulation in cancer, this article reviews the growing number of studies that have shown the importance of these small molecules and how these microRNAs can affect or be affected by genetic and epigenetic mechanisms

    Recurrent hotspot mutations in HRAS Q61 and PI3K-AKT pathway genes as drivers of breast adenomyoepitheliomas

    Get PDF
    Adenomyoepithelioma of the breast is a rare tumor characterized by epithelial-myoepithelial differentiation, of which a subset will progress to invasive or metastatic cancer. We sought to define the genomic landscape of adenomyoepitheliomas. Massively parallel sequencing revealed highly recurrent somatic mutations in HRAS and PI3K-AKT pathway-related genes. Strikingly, HRAS mutations were restricted to estrogen receptor (ER)-negative tumors, all affected codon 61, and all but one co-occurred with PIK3CA or PIK3R1 mutations. To interrogate the functional significance of HRAS Q61 mutations in adenomyoepithelial differentiation, we expressed HRASQ61R alone or in combination with PIK3CAH1047R in non-transformed ER-negative breast epithelial cells. HRASQ61R induced characteristic phenotypes of adenomyoepitheliomas such as the expression of myoepithelial markers and loss of e-cadherin, hyperactivation of AKT signaling, and transformative properties that were arrested by combination therapy with AKT and MEK inhibitors. Our results indicate that breast adenomyoepitheliomas often manifest a unique transformation program featuring HRAS activation

    Neuropsychological predictors of conversion from mild cognitive impairment to Alzheimer’s disease: a feature selection ensemble combining stability and predictability

    Get PDF
    Background Predicting progression from Mild Cognitive Impairment (MCI) to Alzheimer’s Disease (AD) is an utmost open issue in AD-related research. Neuropsychological assessment has proven to be useful in identifying MCI patients who are likely to convert to dementia. However, the large battery of neuropsychological tests (NPTs) performed in clinical practice and the limited number of training examples are challenge to machine learning when learning prognostic models. In this context, it is paramount to pursue approaches that effectively seek for reduced sets of relevant features. Subsets of NPTs from which prognostic models can be learnt should not only be good predictors, but also stable, promoting generalizable and explainable models. Methods We propose a feature selection (FS) ensemble combining stability and predictability to choose the most relevant NPTs for prognostic prediction in AD. First, we combine the outcome of multiple (filter and embedded) FS methods. Then, we use a wrapper-based approach optimizing both stability and predictability to compute the number of selected features. We use two large prospective studies (ADNI and the Portuguese Cognitive Complaints Cohort, CCC) to evaluate the approach and assess the predictive value of a large number of NPTs. Results The best subsets of features include approximately 30 and 20 (from the original 79 and 40) features, for ADNI and CCC data, respectively, yielding stability above 0.89 and 0.95, and AUC above 0.87 and 0.82. Most NPTs learnt using the proposed feature selection ensemble have been identified in the literature as strong predictors of conversion from MCI to AD. Conclusions The FS ensemble approach was able to 1) identify subsets of stable and relevant predictors from a consensus of multiple FS methods using baseline NPTs and 2) learn reliable prognostic models of conversion from MCI to AD using these subsets of features. The machine learning models learnt from these features outperformed the models trained without FS and achieved competitive results when compared to commonly used FS algorithms. Furthermore, the selected features are derived from a consensus of methods thus being more robust, while releasing users from choosing the most appropriate FS method to be used in their classification task.PTDC/EEI-SII/1937/2014; SFRH/BD/95846/2013; SFRH/BD/118872/2016info:eu-repo/semantics/publishedVersio

    In Vivo Approaches Reveal a Key Role for DCs in CD4+ T Cell Activation and Parasite Clearance during the Acute Phase of Experimental Blood-Stage Malaria

    Get PDF
    Dendritic cells (DCs) are phagocytes that are highly specialized for antigen presentation. Heterogeneous populations of macrophages and DCs form a phagocyte network inside the red pulp (RP) of the spleen, which is a major site for the control of blood-borne infections such as malaria. However, the dynamics of splenic DCs during Plasmodium infections are poorly understood, limiting our knowledge regarding their protective role in malaria. Here, we used in vivo experimental approaches that enabled us to deplete or visualize DCs in order to clarify these issues. To elucidate the roles of DCs and marginal zone macrophages in the protection against blood-stage malaria, we infected DTx (diphtheria toxin)-treated C57BL/6.CD11c-DTR mice, as well as C57BL/6 mice treated with low doses of clodronate liposomes (ClLip), with Plasmodium chabaudi AS (Pc) parasites. The first evidence suggesting that DCs could contribute directly to parasite clearance was an early effect of the DTx treatment, but not of the ClLip treatment, in parasitemia control. DCs were also required for CD4+ T cell responses during infection. The phagocytosis of infected red blood cells (iRBCs) by splenic DCs was analyzed by confocal intravital microscopy, as well as by flow cytometry and immunofluorescence, at three distinct phases of Pc malaria: at the first encounter, at pre-crisis concomitant with parasitemia growth and at crisis when the parasitemia decline coincides with spleen closure. In vivo and ex vivo imaging of the spleen revealed that DCs actively phagocytize iRBCs and interact with CD4+ T cells both in T cell-rich areas and in the RP. Subcapsular RP DCs were highly efficient in the recognition and capture of iRBCs during pre-crisis, while complete DC maturation was only achieved during crisis. These findings indicate that, beyond their classical role in antigen presentation, DCs also contribute to the direct elimination of iRBCs during acute Plasmodium infection.São Paulo Research Foundation grants: (2011/24038-1 [MRDL], 2009/08559-1 [HBdS], CAPES/IGC 04/ 2012 [MRDL, CET])

    Contrasting Responses to Harvesting and Environmental Drivers of Fast and Slow Life History Species

    Get PDF
    According to their main life history traits, organisms can be arranged in a continuum from fast (species with small body size, short lifespan and high fecundity) to slow (species with opposite characteristics). Life history determines the responses of organisms to natural and anthropogenic factors, as slow species are expected to be more sensitive than fast species to perturbations. Owing to their contrasting traits, cephalopods and elasmobranchs are typical examples of fast and slow strategies, respectively. We investigated the responses of these two contrasting strategies to fishing exploitation and environmental conditions (temperature, productivity and depth) using generalized additive models. Our results confirmed the foreseen contrasting responses of cephalopods and elasmobranchs to natural (environment) and anthropogenic (harvesting) influences. Even though a priori foreseen, we did expect neither the clear-cut differential responses between groups nor the homogeneous sensitivity to the same factors within the two taxonomic groups. Apart from depth, which affected both groups equally, cephalopods and elasmobranchs were exclusively affected by environmental conditions and fishing exploitation, respectively. Owing to its short, annual cycle, cephalopods do not have overlapping generations and consequently lack the buffering effects conferred by different age classes observed in multi-aged species such as elasmobranchs. We suggest that cephalopods are sensitive to short-term perturbations, such as seasonal environmental changes, because they lack this buffering effect but they are in turn not influenced by continuous, long-term moderate disturbances such as fishing because of its high population growth and turnover. The contrary would apply to elasmobranchs, whose multi-aged population structure would buffer the seasonal environmental effects, but they would display strong responses to uninterrupted harvesting due to its low population resilience. Besides providing empirical evidence to the theoretically predicted contrasting responses of cephalopods and elasmobranchs to disturbances, our results are useful for the sustainable exploitation of these resourcesVersión del editor4,411

    A deletion and a duplication in distal 22q11.2 deletion syndrome region. Clinical implications and review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Individuals affected with DiGeorge and Velocardiofacial syndromes present with both phenotypic diversity and variable expressivity. The most frequent clinical features include conotruncal congenital heart defects, velopharyngeal insufficiency, hypocalcemia and a characteristic craniofacial dysmorphism. The etiology in most patients is a 3 Mb recurrent deletion in region 22q11.2. However, cases of infrequent deletions and duplications with different sizes and locations have also been reported, generally with a milder, slightly different phenotype for duplications but with no clear genotype-phenotype correlation to date.</p> <p>Methods</p> <p>We present a 7 month-old male patient with surgically corrected ASD and multiple VSDs, and dysmorphic facial features not clearly suggestive of 22q11.2 deletion syndrome, and a newborn male infant with cleft lip and palate and upslanting palpebral fissures. Karyotype, FISH, MLPA, microsatellite markers segregation studies and SNP genotyping by array-CGH were performed in both patients and parents.</p> <p>Results</p> <p>Karyotype and FISH with probe N25 were normal for both patients. MLPA analysis detected a partial <it>de novo </it>1.1 Mb deletion in one patient and a novel partial familial 0.4 Mb duplication in the other. Both of these alterations were located at a distal position within the commonly deleted region in 22q11.2. These rearrangements were confirmed and accurately characterized by microsatellite marker segregation studies and SNP array genotyping.</p> <p>Conclusion</p> <p>The phenotypic diversity found for deletions and duplications supports a lack of genotype-phenotype correlation in the vicinity of the LCRC-LCRD interval of the 22q11.2 chromosomal region, whereas the high presence of duplications in normal individuals supports their role as polymorphisms. We suggest that any hypothetical correlation between the clinical phenotype and the size and location of these alterations may be masked by other genetic and/or epigenetic modifying factors.</p

    SPARC 2016 Salford postgraduate annual research conference book of abstracts

    Get PDF
    corecore