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Abstract
According to their main life history traits, organisms can be arranged in a continuum from

fast (species with small body size, short lifespan and high fecundity) to slow (species with

opposite characteristics). Life history determines the responses of organisms to natural and

anthropogenic factors, as slow species are expected to be more sensitive than fast species

to perturbations. Owing to their contrasting traits, cephalopods and elasmobranchs are typi-

cal examples of fast and slow strategies, respectively. We investigated the responses of

these two contrasting strategies to fishing exploitation and environmental conditions (tem-

perature, productivity and depth) using generalized additive models. Our results confirmed

the foreseen contrasting responses of cephalopods and elasmobranchs to natural (environ-

ment) and anthropogenic (harvesting) influences. Even though a priori foreseen, we did

expect neither the clear-cut differential responses between groups nor the homogeneous

sensitivity to the same factors within the two taxonomic groups. Apart from depth, which

affected both groups equally, cephalopods and elasmobranchs were exclusively affected

by environmental conditions and fishing exploitation, respectively. Owing to its short, annual

cycle, cephalopods do not have overlapping generations and consequently lack the buffer-

ing effects conferred by different age classes observed in multi-aged species such as elas-

mobranchs. We suggest that cephalopods are sensitive to short-term perturbations, such

as seasonal environmental changes, because they lack this buffering effect but they are in

turn not influenced by continuous, long-term moderate disturbances such as fishing

because of its high population growth and turnover. The contrary would apply to elasmo-

branchs, whose multi-aged population structure would buffer the seasonal environmental

effects, but they would display strong responses to uninterrupted harvesting due to its low

population resilience. Besides providing empirical evidence to the theoretically predicted

contrasting responses of cephalopods and elasmobranchs to disturbances, our results are

useful for the sustainable exploitation of these resources.
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Introduction
In ecology, organisms can be classified according to their main life history traits on a contin-
uum from fast to slow. Fast life history species are characterized by small body size, short life-
span, early reproduction, small offspring size, high fecundity and short generation time;
opposite characteristics apply to slow life history species [1,2]. The fast-slow hypothesis is cur-
rently the most widely used classification scheme [2] given that the main assumptions of the
traditional r-K strategies concept, from which the hypothesis derives, are considered no longer
valid [3–5]. Organisms displaying the living fast and dying young strategy are, in general, more
productive than those that live more slowly and die older [6,7]. The fast-slow hypothesis has
been empirically tested across different taxonomic groups and highlights the interplay among
physiology and life-history, ecology and evolution at broad scales [7–9]. Life history determines
the responses of organisms to natural (e.g. climate) and anthropogenic (e.g. harvesting) factors,
as slow species are expected to be more sensitive than fast species to perturbations [10–13].

In the marine environment, it is well documented that the intense fishing exploitation, with
synergistic effects of environmental conditions in some cases, has induced more severe declines
in abundance and more noticeable changes in life-history traits of large, slow-growing species
than their smaller, faster-growing counterparts (e.g. [11,14–17]). In general, those species
growing at slower rates and thus maturing later at greater sizes decreased in abundance com-
pared to their counterparts as a result of harvesting; this entailed concomitant changes in the
population structure of these species, such as lower mean individual size and lower maturation
size. The fishery-induced truncation of size or age structure can reduce fecundity, elicit declines
in harvestable biomass or instability in population growth, and eventually increase the vulnera-
bility of fisheries through reduced resilience [18–21]. Harvested organisms have shown some
of the most abrupt trait changes ever observed in wild populations, providing insight for how
fast phenotypes can change [10]. Although fishing activity has been identified as the main
cause of many marine populations depletions (e.g. [18,20,22]), it is recognised that both abiotic
(climate and hydrodynamics) and biotic (trophic resources and predators) environmental vari-
ables can also induce intra- and inter-annual oscillations in the population dynamics of some
exploited species (e.g. [23–25]).

Owing to their contrasting life histories, cephalopods and elasmobranchs are typical exam-
ples of fast and slow strategies, respectively. Cephalopods have short life spans (1.5–2 years at
most) and high population growth rates; they have high production, high fecundity and high
mortality rates [26]. By contrast, elasmobranchs are long-lived, slow growing and late-matur-
ing, and have low production and low mortality rates [27,28]. As a consequence of these char-
acteristics, cephalopod and elasmobranch populations have high and low resilience
respectively.

The sensitivity of cephalopods to natural and human-induced perturbations suggests that
they could act as good ecological indicators [29]. Cephalopod populations are more rapidly
affected than longer-lived species by external drivers but they are also quicker to recover from
perturbations [29–31]. In accordance with the high plasticity of cephalopod populations, sub-
stantial changes in biological traits have been reported at different time scales encompassing
years [32], seasons [33], weeks [34] and even days [35]. Global cephalopod catch has quadru-
pled over the last four decades, which seems to be related to the severe decline of many fish
stocks [31].

In elasmobranchs, population growth rate and thus recovery potential is, on average, signifi-
cantly lower (reflecting increased extinction risk) than that of teleosts and terrestrial mammals
[36]. The fact that more than half of all chondrichthyan species are predicted to be “Threatened
or Near Threatened” according to the IUCN Red List reflects the high vulnerability of
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elasmobranchs [27,37]. Elasmobranchs typically exhibit rapid declines in catch rates (boom
and bust yields), with fisheries collapsing soon after the initiation of exploitation [38].
Although the knowledge on the stock status of elasmobranchs is limited, many populations
around the world show dramatic declines or collapses, particularly the large-sized species
[27,39].

In this paper, we analyse the responses of fast (cephalopods) and slow (elasmobranchs) life
history strategies to fishing exploitation and environmental conditions. According to the con-
trasting life histories of these two taxonomical groups, the starting hypothesis is that elasmo-
branch populations will be more highly impacted by harvesting than cephalopod populations
owing to the lower resilience of the formers. We further hypothesize that the semelparous,
short-lived cephalopods will be, by contrast, more influenced by environmental conditions
than the iteroparous, multi-aged elasmobranch populations. Assessing differential responses to
harvesting of species with contrasting strategies within an ecological community is essential to
manage mixed fisheries under the current Ecosystem Approach to Fisheries [40,41].

Material and Methods

Ethic statement
Biological data were obtained from the annual trawl surveys carried out as part of the Mediter-
ranean International Trawl Survey (MEDITS) project. The sampling was performed under
repeated international standardized protocol (see [42] for details of the survey methodology).
The surveys were conducted across the Spanish territorial waters in the Mediterranean Sea.
The research vessels had full permission from national (Fisheries General Secretariat) and
international authorities (General Fisheries Commission for the Mediterranean) to sample in
territorial and Mediterranean community waters. No approval by an ethics committee was
required, as common exploited species were targeted and trawling did not affect endangered or
protected species or marine protected areas. Most of the authors participate consistently in the
surveys of the MEDITS programme. As most individuals taken by bottom trawl gears arrive
dead or in very bad condition on board, it was not necessary to sacrifice them; the most resis-
tant species such as sharks and rays were thrown back to sea alive.

Sampling and data analysis
Data on cephalopod and elasmobranch abundances were collected during the MEDITS bottom
trawl surveys [42] conducted from 2007 to 2012 around the Balearic Islands (western Mediter-
ranean; Fig 1). These surveys are carried out annually at late spring, following a depth stratified
random sampling scheme in which a set of approximately 50 stations are sampled. The follow-
ing four depth strata are considered: A (50–100 m), B (101–200 m), C (201–500 m) and D
(501–800 m). The sampling gear is the experimental bottom trawl GOC 73, with a 20 mm
mesh codend and average horizontal and vertical net openings of 16.0 and 2.7–3.2 m, respec-
tively. The towing speed is around 2.7–3.0 knots to ensure the best trawl geometry, and the
effective trawling duration varies between 20 and 60 min depending on the depth-strata. For
each sampling station, the position (latitude, longitude) and depth (m) were taken. The mean
density of each studied species was estimated as the total number of individuals by swept area
(n Km-2). The three most abundant cephalopod (common octopus Octopus vulgaris, horned
octopus Eledone cirrhosa and southern shortfin squid Illex coindetii) and elasmobranch (small-
spotted catshark Scyliorhinus canicula, thornback skate Raja clavata and blackmouth shark
Galeus melastomus) species were selected.

To avoid bias in the results caused by sporadic species occurrences in marginal habitats,
only the sampling stations located in the main bathymetric distributional range of each species
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were considered (Fig 2). In order to show the contrasting life-history traits of cephalopods and
elasmobranchs, the main population characteristics of each studied species were summarized
from literature (Table 1). All three cephalopods live 2 years at most, while elasmobranchs life-
spans range between 7 (G.melastomus) and 15 (R. clavata) years. The length of first maturity
has been estimated between 10 and 15 cm mantle length for cephalopods and between 40 and
81 cm total length for elasmobranchs. Fecundity is very high in cephalopods (up to hundred
thousands oocytes) and hatchlings are planktonic larvae spending a few months on pelagic
waters before adopting adult morphology. By contrast, fecundity is very low in elasmobranchs
(11–74 eggs) and the eggs give rise to young fish already displaying the main adult characteris-
tics; as a consequence, population resilience in the three investigated elamosbranchs is rela-
tively low (4.5–14 yr; http://www.fishbase.org/).

Vessel Monitoring System (VMS) records of bottom trawlers, which is the main fleet target-
ing the selected species, were used to estimate the fishing effort for the study area from 2007 to
2012. VMS records have been used as a proxy of the fishing exploitation in many previous
works (e.g. [54–56]). None of the cephalopods and elasmobranchs analysed here are target

Fig 1. Map of the Balearic Islands (western Mediterranean) showing the sampling stations and the surface chlorophyll-a concentration and sea
surface temperature (SST) during the sampling surveys, together with the vessel monitoring system (VMS) records of the bottom trawl fleet
operating around the twomajor islands (Mallorca and Menorca).

doi:10.1371/journal.pone.0148770.g001
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species of the bottom trawl fishery, since all of them are taken as a by-catch [57]. This entails
that the fishing effort exerted on each of the six species is the same and, in case of finding con-
trasting responses between groups or among species, these would not be related to contrasting
fishing mortalities. Only VMS records with speeds between 1.5 and 5.0 knots, revealing fishing

Fig 2. Frequency of occurrence (F%) by depth strata of the fast (cephalopods) and slow (elasmobranchs) life history species analysed. Numbers
between brackets are the sampling size and the arrows indicate the datasets removed from the analysis (see Material and methods).

doi:10.1371/journal.pone.0148770.g002

Table 1. Main population traits of the fast (cephalopods) and slow (elasmobranchs) life history species analyzed in this study obtained from the lit-
erature: maximum age (in years), maximum individual size, size at first maturity (L50) and fecundity. Size and L50 (both in cmmantle and total length
for cephalopods and elasmobranchs, respectively) are shown for females (F) and males (M) separately.

Taxonomical group Species Age (yr) Size (F/M) L50 (F/M) Fecundity Source

Cephalopods Octopus vulgaris 1a 27/27b 18/10b 70,000–650,000b a[43]; b[44]

Eledone cirrhosa 1.5a 19/15b 10/12b 550-6500b a[45]; b[46]

Illex coindetii 1.5 17/14 15/12 30,000–200,000 [47]

Elasmobranchs Scyliorhinus canicula 12a 47/49b 40/40b 18b a[48]; b[49]

Raja clavata 15a 110/89a 81/67a 48/74b a[50];b[51]

Galeus melastomus 7a 64/62b >51/>52b 11/30b a[52]; b[53]

For each species, symbols “a” and “b” refer to the papers reported on the Source column.

doi:10.1371/journal.pone.0148770.t001
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activity [58], were included in the calculations. The sum of records within a radius of 3 km
around each sampling station was averaged to account for the specific effect of fishing effort
intensity at each station. Due to the clear depth gradient in the area (Fig 1), only the VMS rec-
ords situated within the same depth strata than the corresponding sampling station were used.
As a result of the contrasting life-histories of cephalopods and elasmobranchs, different sensi-
tivities to fishing pressure between groups were expected. As aforementioned, whereas cepha-
lopods are short-lived species dying shortly after reproduction during its first year of life,
elasmobranchs are long-lived species with life-spans of several years (see Table 1). Conse-
quently, fishing effort exerted around each station during the previous 3 and 12 months were
calculated for cephalopods and elasmobranchs, respectively.

To investigate putative environmental drivers affecting the abundance of both taxonomic
groups, we tested the effect of two environmental indicators providing information about the
local spatiotemporal changes of sea surface temperature (SST) and chlorophyll-a concentration
(Chla; mg m-3). In order to capture local variations among the different sampling stations, the
average Chla within a 9 km radius of the five months previous to the survey (1st January-31st

May) was calculated. This period includes the spring bloom, occurring between January and
March in the study area [59]. The spatiotemporal average of Chla was computed from weekly
means (at 0.05 degrees of spatial resolution) downloaded from the MODIS sensor from the
web site of NOAA Coast Watch Program and NASA's Goddard Space Flight Center (http://
coastwatch.noaa.gov/). The SST data were obtained from the NCEP/NCAR reanalysis fields
provided by the NOAA/OAR/ESRL PSD [60]. As previous works reported lagged responses to
Chla in fish and cephalopod populations from the western Mediterranean (e.g. [61,62]), two
different series of monthly records, spring data contemporary to the survey and data from the
previous winter, were used.

In order to estimate the effect of harvesting (VMS records) and environmental conditions
(Chla and SST) on the population densities (N km-2) of the six selected species, Generalized
Additive Models (GAMs) and Generalized Additive Mixed Models (GAMMs) were used. To
account for spatial and bathymetric effects, sampling location (latitude, longitude) and depth
were also used as covariates. A backward approach, in which only the significant explanatory
variables were retained, was used to get the best model. Model selection was based on the
Akaike’s information criterion (AIC), which was used as a measure of the goodness of fit as
well as the optimal number of model parameters, the best one having the smallest AIC value.
Model performance was measured as the proportion of the null deviance explained (DE) or the
adjusted regression coefficient (R2) when using GAM or GAMM, respectively. Finally, model
residuals were checked to fulfil the normality assumption and absence of spatial and temporal
autocorrelation. All analyses were implemented with the mgcv library [63] using the R version
3.0.2 (www.R-project.org/).

Results
The spatial distribution of the sampling stations covered most trawling grounds around the
two major Balearic Islands (Mallorca and Menorca) between 50 and 800 m depth, where the
commercial fleet works all the year round (Fig 1). The total number of sampling stations ana-
lyzed during the study period ranged between 133 (O. vulgaris) and 188 (E. cirrhosa) in cepha-
lopods and between 84 (G.melastomus) and 232 (S. canicula) in elasmobranchs (Fig 2). There
were clear bathymetric differences in the frequency of occurrence of the selected species, being
O. vulgaris and G.melastomus the species showing the shallowest and deepest distribution,
respectively (Fig 2). A first set of exploratory scatterplots representing the densities of each spe-
cies against the VMS records showed clear contrasting responses between cephalopods and
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elasmobranchs to the fishing pressure (Fig 3). Whereas the graph did not show any relationship
in the former group, the densities of elasmobranchs decreased noticeably with increasing fish-
ing intensity, especially in R. clavata and G.melastomus.

The full list of GAM and GAMMmodels used to test the species densities against fishing
effort (VMS), environmental conditions (SST, Chla and depth) and spatial distribution is
shown in the Supporting Information; the best model for each species was selected based on
the AIC (Table 2). These models gave rise to significant effects in all cases except for E. cirrhosa,
whose mean density in the area was not affected by any of the selected explanatory variables.
As we were not able to find a suitable model describing this octopus’ densities using those set
of covariates, the following findings refer to the remaining five species.

The deviance explained (expressed as proportions), or R2 (expressed as percentages), was
high in elasmobranchs (S. canicula, 0.38; R. clavata, 44.8%; G.melastomus, 55.4%) as well as in
O. vulgaris (0.65), but much lower in I. coindetii (0.08). Depth was statistically significant for
all species and, interestingly, its effect was lineal in cephalopods but non-lineal in elasmo-
branchs (Fig 4). Population densities gradually increased and decreased with depth in I. coinde-
tii and O. vulgaris, respectively. Whereas densities of S. canicula and R. clavata also decreased
with depth, G.melastomus effect was hump-shaped with a maximum at about 400 m. The sam-
pling location was significant for O. vulgaris, S. canicula and R. clavata and it had no effect for
I. coindetii and G.melastomus

Regarding the remaining factors (fishing effort and environmental variables), the best mod-
els differed clearly between groups since cephalopods and elasmobranchs were exclusively
driven by environmental variables, namely SST, and fishing exploitation (VMS) respectively.
Densities of I. coindetii decreased linearly with increasing SST, whereas O. vulgaris densities
also showed a hump-shaped trend with a maximum at around 21–22°C. The response of elas-
mobranchs to fishing exploitation (VMS) was homogeneous, as their population densities
decreased linearly with increasing harvesting in all three species.

Discussion
Our results confirmed the foreseen contrasting responses of fast (cephalopods) and slow (elas-
mobranchs) life history species to natural (environment) and anthropogenic (harvesting) influ-
ences. Even though a priori foreseen, we did expect neither the clear-cut differential responses
between groups nor the homogeneous sensitivity to the same factors within the two taxonomic
groups. Apart from depth, which affected both groups, cephalopods and elasmobranchs were
exclusively affected by environmental conditions (namely SST) and fishing exploitation,
respectively. Besides providing empirical evidence to the theoretically predicted contrasting
responses of cephalopods and elasmobranchs to disturbances, our study also reveals useful
information for the sustainable exploitation of these resources under the current Ecosystem
Approach to Fisheries Management (EAFM).

Main life history traits determine population responses to disturbances, as the fast-life his-
tory species are more able to withstand them than the slow life history strategists. The fast-slow
continuum in life-history not only applies to taxonomic groups with strong differences in life
cycles. Strategies can be quite diverse within a taxon or even within populations of the same
species [64], whereas distantly related taxa can display similar strategies [65]. Consequently it
is inappropriate to generalize a specific strategy to an entire class or family [66], which might
explain the lack of significant responses in the horned octopus in contrast with the remaining
two cephalopod species analysed. As this octopus was found to be affected by environmental
variables in nearby areas [61,62], the lack of significant responses in our study might be related
with the highly complex oceanographic conditions at relatively small spatial scales from the
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western Mediterranean, which has been reported to induce differences in the spatial distribu-
tion and life cycles of this species [67,68]. An entire fast-slow continuum also occurs within
elasmobranchs [39,69], as they encompass a broad range of life-histories from the small-sized
sharks and rays to the giant species (e.g. white shark, whale-shark). Since in our study we ana-
lyzed relatively small-sized elasmobranchs situated in the fast corner of this fast-slow

Fig 3. Scatterplots of population densities against fishing effort (VMS, vessel monitoring systems records) for the cephalopods (above) and
elasmobranchs (below) species analysed.

doi:10.1371/journal.pone.0148770.g003

Table 2. Best GAMmodels obtained for the fast (cephalopods) and slow (elasmobranchs) life history species analysed in this study. Species den-
sities (N km-2) were modelled against different covariates (environmental parameters and fishing effort; see Material and methods). Significant covariates,
degrees of freedom (DF), goodness of fit (AIC), model performance (DE/R2) and sampling size (N) are shown. AIC: Akaike Information Criterion; DE/R2: devi-
ance explained (DE, in percentage) or regression coefficient (R2) in case of using GAM or GAMM respectively.

Taxonomical group Species Covariates DF AIC DE/R2 N

Cephalopods Octopus vulgaris s(SST, k = 4)+s(depth, k = 4)+s(lon, lat, k = 10),random = list(station = ~1) 10 258.8 0.65 108

Illex coindetii s(SST, k = 4)+s(depth, k = 4),random = list(year = ~1) 7 410.4 0.08 150

Elasmobranchs Scyliorhinus canicula s(VMS)+s(depth, k = 4)+s(lon, lat, k = 10),correlation = corAR1() 10 630.8 0.38 229

Raja clavata s(VMS)+s(depth, k = 4)+s(lon, lat, k = 10) 11.4 396.4 44.8 158

Galeus melastomus s(VMS)+s(depth, k = 4) 5.9 279.3 55.4 83

doi:10.1371/journal.pone.0148770.t002
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continuum, we did not expect the strong responses to harvesting we finally found, as it would
have been expected in typical slow living, larger-sized species. Such strong responses to har-
vesting, however, fully agree with the dramatic declines of these species reported either in our
study area [70] and other nearby Mediterranean areas such as the Adriatic Sea [71–74]. To give
some figures, elasmobranchs declined by 94.5% over 57 years in the Adriatic [73], with sharks
declining more than rays (95.6% vs 87.7%); the small-spotted shark drove most of the patterns
(96.2%) and the thornback skate, the most abundant ray in the 1940s, recorded the steepest
decline (97.2%). Elasmobranchs are the most endangered group of marine fishes in the Medi-
terranean, with 31 species assessed as critically endangered, endangered or vulnerable [75].

The observed responses of such comparatively small-sized elasmobranchs agree with the
view that body size is not a good indicator of life-history strategies [17,76–79]. In the marine
environment, tunas and their relatives constitute good case studies for this view. Time related
traits describing the speed of life, rather than size-related traits, better explained the extend and
rate of declines and current exploitation status of this taxonomical group [77]. Despite being

Fig 4. Outputs of the statistically significant generalized additive models (GAM) modelling cephalopod and elasmobranch densities (N km-2)
against environmental (SST, depth) and fishing effort (VMS) covariates.Model details are in Table 2.

doi:10.1371/journal.pone.0148770.g004
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relatively large (>200 cm), yellowfin tuna is a fast-growing and short lived tropical species that
can cope with relatively high fishing mortality rates compared with the similar-sized temperate
bluefin tuna. Similar results were obtained when comparing yellowfin tuna with the smaller
and lighter elasmobranch blue shark [17]. Blue shark was highly sensitive to low exploitation
rates, while yellowfin populations were extremely robust across a wide range of exploitation
rates.

In our study, cephalopods were affected by environmental conditions but not by fishing,
which tallies with the ecological change in global landings hypothesized by Caddy and Rod-
house [30]. According to these authors, as most coastal and shelf cephalopod fisheries are likely
to be fully exploited or overexploited (as is the case in our populations [80]), the current annual
fluctuations in their landings are probably largely environmentally-driven. The high sensitivity
of cephalopods to environmental conditions is well-know, despite the underlying causes of the
links between environment and population dynamics are poorly understood [31]. As a result,
cephalopods have been suggested as good ecological indicators of environmental change [29],
especially climate change [33], which agrees with the significant sensitivity to sea surface tem-
perature found in our study (but see [81]). In contrast to this view, however, our results indi-
cate that cephalopods would not be good indicators of moderate fishing exploitation. It should
be stressed that our results would not imply that cephalopods could cope with any level of har-
vesting because the fishing exploitation in our study area is moderate compared to nearby
areas [82] and responses might be triggered under higher rates. As we hypothesize below, the
contrasting responses of cephalopods to environment and harvesting might be related to the
fast life history characteristics of this taxonomic group. The lack of response to moderate fish-
ing might also reflect the positive effect that the overfishing of groundfish stocks has had on
many cephalopod populations worldwide [30].

Contrary to cephalopods, elasmobranchs were found to be affected by fishing but not by
environmental conditions. This is in accordance with the general agreement that the dominant
factor in the decline of elasmobranchs has been the fishing exploitation, although probably act-
ing together with synergistic effects of environmental conditions [27,71,72,83,84]. Owing to its
slow life history traits (slow growth rate, late maturity, low fecundity), which are more similar
to those of large mammals than to other fishes, elasmobranchs are particularly vulnerable to
harvesting [27,38,39]. A recent review estimated that one-quarter of elasmobranch species are
threatened due to overfishing and that the population depletion is particularly prevalent in the
Indo-Pacific Biodiversity Triangle and Mediterranean Sea [27]. The severe decline of large
sharks in the Mediterranean during the last two centuries would reflect its long history of
intense fishing exploitation [85].

In accordance with previous works (e.g. [11,13,14]), our results indicate that the differential
responses of fast (cephalopods) and slow (elasmobranchs) species to harvesting and environ-
mental conditions are governed by their contrasting life history characteristics. Owing to its
short, annual cycle, cephalopod populations do not have overlapping generations and conse-
quently lack the buffering effects conferred by different age classes observed in multi-aged spe-
cies such as elasmobranchs. We suggest that cephalopods are sensitive to short-term
perturbations, such as seasonal environmental changes, because they lack this buffering effect
but they are in turn not influenced by continuous, long-term disturbances such as moderate
fishing, because of its high population growth and turnover. The contrary would apply to elas-
mobranchs, whose multi-aged population structure would buffer the seasonal environmental
effects, but they would display strong responses to uninterrupted harvesting due to its low pop-
ulation resilience. This explanation is in line with Saether et al. [86], when stating that pertur-
bations will affect many age classes in long-lived species, which is likely to result in delayed
responses in the dynamics because of covariation in environmental stochasticity producing
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fluctuations in age structure. In contrast, short-lived species will show far more immediate
responses to environmental perturbations, because changes in population size will be caused
by demographic variations across most parts of the life cycle.

All cephalopod and elasmobranch species analysed in this study are important by-catch
resources from the Mediterranean bottom trawl mixed-fisheries, which take a large number of
species having different sensitivities to harvesting. The management of mixed-fisheries consti-
tutes an important challenge, especially in the framework of the Ecosystem Approach to Fish-
eries, which goes beyond the single-stock strategy, and current approaches based on the
maximum sustainable yield (MSY) concept. The MSY has been adopted as the primary man-
agement goal by several inter-government fishery organisations (e.g. IWC, ICCAT, IATTC)
and has been the cornerstone of the federal fishery policy in the United States for decades [87].
In Europe, the concept has been integrated into the Common Fisheries Policy, with the com-
mitment to maintain or restore their fish stocks to MSY levels by 2020 (EU Regulation N.
1380/2013). The MSY concept, however, has been criticized [88,89] and is especially problem-
atic in the case of mixed-fisheries because it is not possible to simultaneously obtain MSY val-
ues for more than one species at a time and alternative approaches are thus required [90–92].
The existence of complex ecological interactions involving the impacts of both the environ-
mental conditions, such as climate change, and the fishing exploitation complicates even fur-
ther seeking MSY targets at mixed-fisheries or ecosystem levels [90–92]. According to
Mackinson et al. [90], taking account of the effect of environmental change and fishing on spe-
cies dynamics and determining their relative influence is challenging research of vital impor-
tance to developing robust long-term fisheries management plans. Our work is in line with this
claim since it demonstrates, together with other many studies already reported here, the exis-
tence of contrasting sensitivities to natural or anthropogenic disturbances at different taxo-
nomical levels (species, class) that should be taken into account for management purposes and
highlights the need for specific strategies adapted to those differential sensitivities.
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