2,022 research outputs found
Positronium Decay : Gauge Invariance and Analyticity
The construction of positronium decay amplitudes is handled through the use
of dispersion relations. In this way, emphasis is put on basic QED principles:
gauge invariance and soft-photon limits (analyticity).
A firm grounding is given to the factorization approaches, and some
ambiguities in the spin and energy structures of the positronium wavefunction
are removed. Non-factorizable amplitudes are naturally introduced. Their
dynamics is described, especially regarding the enforcement of gauge invariance
and analyticity through delicate interferences. The important question of the
completeness of the present theoretical predictions for the decay rates is then
addressed. Indeed, some of those non-factorizable contributions are unaccounted
for by NRQED analyses. However, it is shown that such new contributions are
highly suppressed, being of order alpha^3.
Finally, a particular effective form factor formalism is constructed for
parapositronium, allowing a thorough analysis of binding energy effects and
analyticity implementation.Comment: 34 pages, 13 figure
Charge asymmetries of top quarks: a window to new physics at hadron colliders
With the next start of LHC, a huge production of top quarks is expected.
There are several models that predict the existence of heavy colored resonances
decaying to top quarks in the TeV energy range. A peak in the differential
cross section could reveal the existence of such a resonance, but this is
experimentally challenging, because it requires selecting data samples where
top and antitop quarks are highly boosted. Nonetheless, the production of such
resonances might generate a sizable charge asymmetry of top versus antitop
quarks. We consider a toy model with general flavour independent couplings of
the resonance to quarks, of both vector and axial-vector kind. The charge
asymmetry turns out to be a more powerful observable to detect new physics than
the differential cross section, because its highest statistical significance is
achieved with data samples of top-antitop quark pairs of low invariant masses
Impact of Systematic Errors in Sunyaev-Zel'dovich Surveys of Galaxy Clusters
Future high-resolution microwave background measurements hold the promise of
detecting galaxy clusters throughout our Hubble volume through their
Sunyaev-Zel'dovich (SZ) signature, down to a given limiting flux. The number
density of galaxy clusters is highly sensitive to cluster mass through
fluctuations in the matter power spectrum, as well as redshift through the
comoving volume and the growth factor. This sensitivity in principle allows
tight constraints on such quantities as the equation of state of dark energy
and the neutrino mass. We evaluate the ability of future cluster surveys to
measure these quantities simultaneously when combined with PLANCK-like CMB
data. Using a simple effective model for uncertainties in the cluster mass-SZ
flux relation, we evaluate systematic shifts in cosmological constraints from
cluster SZ surveys. We find that a systematic bias of 10% in cluster mass
measurements can give rise to shifts in cosmological parameter estimates at
levels larger than the statistical errors. Systematic errors are
unlikely to be detected from the mass and redshift dependence of cluster number
counts alone; increasing survey size has only a marginal effect. Implications
for upcoming experiments are discussed.Comment: 12 pages, 6 figures; accepted to JCAP; revised to match submitted
versio
Crop surveys in Bihar. I. Studies in the estimation of acre-yield of sugarcane
This article does not have an abstract
The Atacama Cosmology Telescope: Cosmological Parameters from the 2008 Power Spectra
We present cosmological parameters derived from the angular power spectrum of
the cosmic microwave background (CMB) radiation observed at 148 GHz and 218 GHz
over 296 deg^2 with the Atacama Cosmology Telescope (ACT) during its 2008
season. ACT measures fluctuations at scales 500<l<10000. We fit a model for the
lensed CMB, Sunyaev-Zel'dovich (SZ), and foreground contribution to the 148 GHz
and 218 GHz power spectra, including thermal and kinetic SZ, Poisson power from
radio and infrared point sources, and clustered power from infrared point
sources. The power from thermal and kinetic SZ at 148 GHz is estimated to be
B_3000 = 6.8+-2.9 uK^2, where B_l=l(l+1)C_l/2pi. We estimate primary
cosmological parameters from the 148 GHz spectrum, marginalizing over SZ and
source power. The LCDM cosmological model is a good fit to the data, and LCDM
parameters estimated from ACT+WMAP are consistent with the 7-year WMAP limits,
with scale invariant n_s = 1 excluded at 99.7% CL (3sigma). A model with no CMB
lensing is disfavored at 2.8sigma. By measuring the third to seventh acoustic
peaks, and probing the Silk damping regime, the ACT data improve limits on
cosmological parameters that affect the small-scale CMB power. The ACT data
combined with WMAP give a 6sigma detection of primordial helium, with Y_P =
0.313+-0.044, and a 4sigma detection of relativistic species, assumed to be
neutrinos, with Neff = 5.3+-1.3 (4.6+-0.8 with BAO+H0 data). From the CMB alone
the running of the spectral index is constrained to be dn/dlnk = -0.034 +-
0.018, the limit on the tensor-to-scalar ratio is r<0.25 (95% CL), and the
possible contribution of Nambu cosmic strings to the power spectrum is
constrained to string tension Gmu<1.6 \times 10^-7 (95% CL).Comment: 20 pages, 13 figures. Submitted to ApJ. This paper is a companion to
Hajian et al. (2010) and Das et al. (2010
Measurement of electron-neutrino electron elastic scattering
The cross section for the elastic scattering reaction nu_e+e- -> nu_e+e- was
measured by the Liquid Scintillator Neutrino Detector using a mu+ decay-at-rest
nu_e beam at the Los Alamos Neutron Science Center. The standard model of
electroweak physics predicts a large destructive interference between the
charge current and neutral current channels for this reaction. The measured
cross section, sigma_{nu_e e-}=[10.1 +- 1.1(stat.) +- 1.0(syst.)]x E_{nu_e}
(MeV) x 10^{-45} cm^2, agrees well with standard model expectations. The
measured value of the interference parameter, I=-1.01 +- 0.13(stat.) +-
0.12(syst.), is in good agreement with the standard model expectation of
I^{SM}=-1.09. Limits are placed on neutrino flavor-changing neutral currents.
An upper limit on the muon-neutrino magnetic moment of 6.8 x 10^{-10} mu_{Bohr}
is obtained using the nu_mu and \bar{nu}_mu fluxes from pi+ and mu+ decay.Comment: 22 pages, 11 figure
The Atacama Cosmology Telescope: A Measurement of the 600< ell <8000 Cosmic Microwave Background Power Spectrum at 148 GHz
We present a measurement of the angular power spectrum of the cosmic
microwave background (CMB) radiation observed at 148 GHz. The measurement uses
maps with 1.4' angular resolution made with data from the Atacama Cosmology
Telescope (ACT). The observations cover 228 square degrees of the southern sky,
in a 4.2-degree-wide strip centered on declination 53 degrees South. The CMB at
arcminute angular scales is particularly sensitive to the Silk damping scale,
to the Sunyaev-Zel'dovich (SZ) effect from galaxy clusters, and to emission by
radio sources and dusty galaxies. After masking the 108 brightest point sources
in our maps, we estimate the power spectrum between 600 < \ell < 8000 using the
adaptive multi-taper method to minimize spectral leakage and maximize use of
the full data set. Our absolute calibration is based on observations of Uranus.
To verify the calibration and test the fidelity of our map at large angular
scales, we cross-correlate the ACT map to the WMAP map and recover the WMAP
power spectrum from 250 < ell < 1150. The power beyond the Silk damping tail of
the CMB is consistent with models of the emission from point sources. We
quantify the contribution of SZ clusters to the power spectrum by fitting to a
model normalized at sigma8 = 0.8. We constrain the model's amplitude ASZ < 1.63
(95% CL). If interpreted as a measurement of sigma8, this implies sigma8^SZ <
0.86 (95% CL) given our SZ model. A fit of ACT and WMAP five-year data jointly
to a 6-parameter LCDM model plus terms for point sources and the SZ effect is
consistent with these results.Comment: 15 pages, 8 figures. Accepted for publication in Ap
- …