10 research outputs found

    Adjuvant interferon gamma in patients with drug – resistant pulmonary tuberculosis: a pilot study

    Get PDF
    BACKGROUND: Tuberculosis (TB) is increasing in the world and drug-resistant (DR) disease beckons new treatments. METHODS: To evaluate the action of interferon (IFN) gamma as immunoadjuvant to chemotherapy on pulmonary DR-TB patients, a pilot, open label clinical trial was carried out in the Cuban reference ward for the management of this disease. The eight subjects existing in the country at the moment received, as in-patients, 1 × 10(6 )IU of recombinant human IFN gamma intramuscularly, daily for one month and then three times per week up to 6 months as adjuvant to the indicated chemotherapy, according to their antibiograms and WHO guidelines. Sputum samples collection for direct smear observation and culture as well as routine clinical and thorax radiography assessments were done monthly. RESULTS: Sputum smears and cultures became negative for acid-fast-bacilli before three months of treatment in all patients. Lesion size was reduced at the end of 6 months treatment; the lesions disappeared in one case. Clinical improvement was also evident; body mass index increased in general. Interferon gamma was well tolerated. Few adverse events were registered, mostly mild; fever and arthralgias prevailed. CONCLUSIONS: These data suggest that IFN gamma is useful and well tolerated as adjunctive therapy in patients with DR-TB. Further controlled clinical trials are encouraged

    Review of Journal of Cardiovascular Magnetic Resonance 2013

    Full text link

    Publisher Correction: Whole-genome sequencing of a sporadic primary immunodeficiency cohort (Nature, (2020), 583, 7814, (90-95), 10.1038/s41586-020-2265-1)

    No full text

    Mapping the human genetic architecture of COVID-19

    Get PDF
    The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3,4,5,6,7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease

    A second update on mapping the human genetic architecture of COVID-19

    Get PDF
    corecore