89 research outputs found

    Expansion and subfunctionalisation of flavonoid 3',5'-hydroxylases in the grapevine lineage

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Flavonoid 3',5'-hydroxylases (F3'5'Hs) and flavonoid 3'-hydroxylases (F3'Hs) competitively control the synthesis of delphinidin and cyanidin, the precursors of blue and red anthocyanins. In most plants, <it>F3'5'H </it>genes are present in low-copy number, but in grapevine they are highly redundant.</p> <p>Results</p> <p>The first increase in <it>F3'5'H </it>copy number occurred in the progenitor of the eudicot clade at the time of the γ triplication. Further proliferation of <it>F3'5'H</it>s has occurred in one of the paleologous loci after the separation of Vitaceae from other eurosids, giving rise to 15 paralogues within 650 kb. Twelve reside in 9 tandem blocks of ~35-55 kb that share 91-99% identity. The second paleologous <it>F3'5'H </it>has been maintained as an orphan gene in grapevines, and lacks orthologues in other plants. Duplicate <it>F3'5'H</it>s have spatially and temporally partitioned expression profiles in grapevine. The orphan <it>F3'5'H </it>copy is highly expressed in vegetative organs. More recent duplicate <it>F3'5'H</it>s are predominately expressed in berry skins. They differ only slightly in the coding region, but are distinguished in the structure of the promoter. Differences in <it>cis</it>-regulatory sequences of promoter regions are paralleled by temporal specialisation of gene transcription during fruit ripening. Variation in anthocyanin profiles consistently reflects changes in the <it>F3'5'H </it>mRNA pool across different cultivars. More <it>F3'5'H </it>copies are expressed at high levels in grapevine varieties with 93-94% of 3'5'-OH anthocyanins. In grapevines depleted in 3'5'-OH anthocyanins (15-45%), fewer <it>F3'5'H </it>copies are transcribed, and at lower levels. Conversely, only two copies of the gene encoding the competing F3'H enzyme are present in the grape genome; one copy is expressed in both vegetative and reproductive organs at comparable levels among cultivars, while the other is transcriptionally silent.</p> <p>Conclusions</p> <p>These results suggest that expansion and subfunctionalisation of <it>F3'5'H</it>s have increased the complexity and diversification of the fruit colour phenotype among red grape varieties.</p

    Sugar and abscisic acid signaling orthologs are activated at the onset of ripening in grape

    Get PDF
    The onset of ripening involves changes in sugar metabolism, softening, and color development. Most understanding of this process arises from work in climacteric fruits where the control of ripening is predominately by ethylene. However, many fruits such as grape are nonclimacteric, where the onset of ripening results from the integration of multiple hormone signals including sugars and abscisic acid (ABA). In this study, we identified ten orthologous gene families in Vitis vinifera containing components of sugar and ABA-signaling pathways elucidated in model systems, including PP2C protein phosphatases, and WRKY and homeobox transcription factors. Gene expression was characterized in control- and deficit-irrigated, field-grown Cabernet Sauvignon. Sixty-seven orthologous genes were identified, and 38 of these were expressed in berries. Of the genes expressed in berries, 68% were differentially expressed across development and/or in response to water deficit. Orthologs of several families were induced at the onset of ripening, and induced earlier and to higher levels in response to water deficit; patterns of expression that correlate with sugar and ABA accumulation during ripening. Similar to field-grown berries, ripening phenomena were induced in immature berries when cultured with sucrose and ABA, as evidenced by changes in color, softening, and gene expression. Finally, exogenous sucrose and ABA regulated key orthologs in culture, similar to their regulation in the field. This study identifies novel candidates in the control of nonclimacteric fruit ripening and demonstrates that grape orthologs of key sugar and ABA-signaling components are regulated by sugar and ABA in fleshy fruit

    Colour assessment outcomes – a new approach to grading the severity of color vision loss

    Get PDF
    INTRODUCTION: Recent studies have shown that a significant percentage of subjects with anomalous, congenital trichromacy can perform the suprathreshold, colour-related tasks encountered in many occupations with the same accuracy as normal trichromats. In the absence of detailed, occupation-specific studies, an alternative approach is to make use of new findings and the statistical outcomes of past practices that have been considered safe to produce graded, justifiable categories of colour vision that can be enforced. METHODS: We analyzed traditional color assessment outcomes and measured severity of colour vision loss using the CAD test in 1363 subjects (336 normals, 705 deutan, 319 protan and 3 tritan). The severity of colour vision loss was measured in each subject and statistical, pass / fail outcomes established for each of the most commonly used, conventional colour assessment tests and protocols. RESULTS: The correlation between the number of Ishihara (IH) test plates subjects fail and the severity of RG colour vision loss was very poor. The 38 plates IH test has high sensitivity when no errors are allowed (i.e., only 0.71% deutans and 0.63% protans pass). Protocols based on zero errors are uncommon since 18.15% of normal trichromats fail. The most common protocols employ either the 24 or the 14 plates editions with two or less errors. These protocols pass almost all normal trichromats, but the deutans and some protans that also pass (when two or less errors are allowed) can be severely deficient. This is simply because the most challenging plates have not been included in the 24 and 14 plates editions. As a result, normals no longer fail, but the deutans and protans that pass have more severe loss of colour vision since they fail less challenging plates. The severity of colour vision loss was measured in each subject and statistical, pass / fail outcomes established for each of the most commonly used, conventional colour assessment tests and protocols. DISCUSSION: Historical evidence and new findings that relate severity of loss to the effective use of colour signals in a number of tasks provide the basis for a new colour grading system based on six categories. A single colour assessment test is needed to establish the applicant’s Colour Vision category which can range from ‘supernormal’ (CV0), for the most stringent, colour-demanding tasks, to ‘severe colour deficiency’, when red / green colour vision is either absent or extremely weak (CV5)

    Berry Flesh and Skin Ripening Features in Vitis vinifera as Assessed by Transcriptional Profiling

    Get PDF
    Background Ripening of fleshy fruit is a complex developmental process involving the differentiation of tissues with separate functions. During grapevine berry ripening important processes contributing to table and wine grape quality take place, some of them flesh- or skin-specific. In this study, transcriptional profiles throughout flesh and skin ripening were followed during two different seasons in a table grape cultivar ‘Muscat Hamburg’ to determine tissue-specific as well as common developmental programs. Methodology/Principal Findings Using an updated GrapeGen Affymetrix GeneChip® annotation based on grapevine 12×v1 gene predictions, 2188 differentially accumulated transcripts between flesh and skin and 2839 transcripts differentially accumulated throughout ripening in the same manner in both tissues were identified. Transcriptional profiles were dominated by changes at the beginning of veraison which affect both pericarp tissues, although frequently delayed or with lower intensity in the skin than in the flesh. Functional enrichment analysis identified the decay on biosynthetic processes, photosynthesis and transport as a major part of the program delayed in the skin. In addition, a higher number of functional categories, including several related to macromolecule transport and phenylpropanoid and lipid biosynthesis, were over-represented in transcripts accumulated to higher levels in the skin. Functional enrichment also indicated auxin, gibberellins and bHLH transcription factors to take part in the regulation of pre-veraison processes in the pericarp, whereas WRKY and C2H2 family transcription factors seems to more specifically participate in the regulation of skin and flesh ripening, respectively. Conclusions/Significance A transcriptomic analysis indicates that a large part of the ripening program is shared by both pericarp tissues despite some components are delayed in the skin. In addition, important tissue differences are present from early stages prior to the ripening onset including tissue-specific regulators. Altogether, these findings provide key elements to understand berry ripening and its differential regulation in flesh and skin.This study was financially supported by GrapeGen Project funded by Genoma España within a collaborative agreement with Genome Canada. The authors also thank The Ministerio de Ciencia e Innovacion for project BIO2008-03892 and a bilateral collaborative grant with Argentina (AR2009-0021). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewe

    Increasing the source/sink ratio in Vitis vinifera (cv Sangiovese) induces extensive transcriptome reprogramming and modifies berry ripening

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cluster thinning is an agronomic practice in which a proportion of berry clusters are removed from the vine to increase the source/sink ratio and improve the quality of the remaining berries. Until now no transcriptomic data have been reported describing the mechanisms that underlie the agronomic and biochemical effects of thinning.</p> <p>Results</p> <p>We profiled the transcriptome of <it>Vitis vinifera </it>cv. Sangiovese berries before and after thinning at veraison using a genome-wide microarray representing all grapevine genes listed in the latest V1 gene prediction. Thinning increased the source/sink ratio from 0.6 to 1.2 m<sup>2 </sup>leaf area per kg of berries and boosted the sugar and anthocyanin content at harvest. Extensive transcriptome remodeling was observed in thinned vines 2 weeks after thinning and at ripening. This included the enhanced modulation of genes that are normally regulated during berry development and the induction of a large set of genes that are not usually expressed.</p> <p>Conclusion</p> <p>Cluster thinning has a profound effect on several important cellular processes and metabolic pathways including carbohydrate metabolism and the synthesis and transport of secondary products. The integrated agronomic, biochemical and transcriptomic data revealed that the positive impact of cluster thinning on final berry composition reflects a much more complex outcome than simply enhancing the normal ripening process.</p

    Towards a scientific interpretation of the terroir concept: plasticity of the grape berry metabolome

    Get PDF
    BACKGROUND: The definition of the terroir concept is one of the most debated issues in oenology and viticulture. The dynamic interaction among diverse factors including the environment, the grapevine plant and the imposed viticultural techniques means that the wine produced in a given terroir is unique. However, there is an increasing interest to define and quantify the contribution of individual factors to a specific terroir objectively. Here, we characterized the metabolome and transcriptome of berries from a single clone of the Corvina variety cultivated in seven different vineyards, located in three macrozones, over a 3-year trial period. RESULTS: To overcome the anticipated strong vintage effect, we developed statistical tools that allowed us to identify distinct terroir signatures in the metabolic composition of berries from each macrozone, and from different vineyards within each macrozone. We also identified non-volatile and volatile components of the metabolome which are more plastic and therefore respond differently to terroir diversity. We observed some relationships between the plasticity of the metabolome and transcriptome, allowing a multifaceted scientific interpretation of the terroir concept. CONCLUSIONS: Our experiments with a single Corvina clone in different vineyards have revealed the existence of a clear terroir-specific effect on the transcriptome and metabolome which persists over several vintages and allows each vineyard to be characterized by the unique profile of specific metabolites.Andrea Anesi, Matteo Stocchero, Silvia Dal Santo, Mauro Commisso, Sara Zenoni, Stefania Ceoldo, Giovanni Battista Tornielli, Tracey E. Siebert, Markus Herderich, Mario Pezzotti and Flavia Guzz

    Transcriptomic and biochemical investigations support the role of rootstock-scion interaction in grapevine berry quality

    Get PDF
    Background In viticulture, rootstock genotype plays a critical role to improve scion physiology, berry quality and to adapt grapevine (Vitis viniferaL.) to different environmental conditions. This study aimed at investigating the effect of two different rootstocks (1103 Paulsen - P - and Mgt 101-14 - M) in comparison with not grafted plants - NGC - on transcriptome (RNA-seq and small RNA-seq) and chemical composition of berry skin inPinot noir, and exploring the influence of rootstock-scion interaction on grape quality. Berry samples, collected at veraison and maturity, were investigated at transcriptional and biochemical levels to depict the impact of rootstock on berry maturation. Results RNA- and miRNA-seq analyses highlighted that, at veraison, the transcriptomes of the berry skin are extremely similar, while variations associated with the different rootstocks become evident at maturity, suggesting a greater diversification at transcriptional level towards the end of the ripening process. In the experimental design, resembling standard agronomic growth conditions, the vines grafted on the two different rootstocks do not show a high degree of diversity. In general, the few genes differentially expressed at veraison were linked to photosynthesis, putatively because of a ripening delay in not grafted vines, while at maturity the differentially expressed genes were mainly involved in the synthesis and transport of phenylpropanoids (e.g. flavonoids), cell wall loosening, and stress response. These results were supported by some differences in berry phenolic composition detected between grafted and not grafted plants, in particular in resveratrol derivatives accumulation. Conclusions Transcriptomic and biochemical data demonstrate a stronger impact of 1103 Paulsen rootstock than Mgt 101-14 or not grafted plants on ripening processes related to the secondary metabolite accumulations in berry skin tissue. Interestingly, theMYB14gene, involved in the feedback regulation of resveratrol biosynthesis was up-regulated in 1103 Paulsen thus supporting a putative greater accumulation of stilbenes in mature berries

    Transcriptomic analysis of the late stages of grapevine (Vitis vinifera cv. Cabernet Sauvignon) berry ripening reveals significant induction of ethylene signaling and flavor pathways in the skin

    Get PDF
    Background: Grapevine berry, a nonclimacteric fruit, has three developmental stages; the last one is when berrycolor and sugar increase. Flavors derived from terpenoid and fatty acid metabolism develop at the very end of thisripening stage. The transcriptomic response of pulp and skin of Cabernet Sauvignon berries in the late stages ofripening between 22 and 37 \ub0Brix was assessed using whole-genome micorarrays.Results: The transcript abundance of approximately 18,000 genes changed with \ub0Brix and tissue type. There were alarge number of changes in many gene ontology (GO) categories involving metabolism, signaling and abioticstress. GO categories reflecting tissue differences were overrepresented in photosynthesis, isoprenoid metabolismand pigment biosynthesis. Detailed analysis of the interaction of the skin and pulp with \ub0Brix revealed that therewere statistically significantly higher abundances of transcripts changing with \ub0Brix in the skin that were involved inethylene signaling, isoprenoid and fatty acid metabolism. Many transcripts were peaking around known optimalfruit stages for flavor production. The transcript abundance of approximately two-thirds of the AP2/ERF superfamilyof transcription factors changed during these developmental stages. The transcript abundance of a unique clade ofERF6-type transcription factors had the largest changes in the skin and clustered with genes involved in ethylene,senescence, and fruit flavor production including ACC oxidase, terpene synthases, and lipoxygenases. The transcriptabundance of important transcription factors involved in fruit ripening was also higher in the skin.Conclusions: A detailed analysis of the transcriptome dynamics during late stages of ripening of grapevine berriesrevealed that these berries went through massive transcriptional changes in gene ontology categories involvingchemical signaling and metabolism in both the pulp and skin, particularly in the skin. Changes in the transcriptabundance of genes involved in the ethylene signaling pathway of this nonclimacteric fruit were statisticallysignificant in the late stages of ripening when the production of transcripts for important flavor and aroma compoundswere at their highest. Ethylene transcription factors known to play a role in leaf senescence also appear to play a role infruit senescence. Ethylene may play a bigger role than previously thought in this non-climacteric fruit
    corecore