314 research outputs found

    Effect of cyclosporine on hepatic cytosolic estrogen and androgen receptor levels before and after partial hepatectomy

    Get PDF
    Estrogen and androgen receptors within the liver have been reported to modulate the hepatic regenerative response to partial hepatectomy. Moreover, cyclosporine has several untoward effects that might occur as a consequence of alterations in sex hormone activity. To evaluate these questions the following experiments were performed. Estrogen and androgen receptors in cytosol were quantitated in livers of rats treated with cyclosporine or olive oil vehicle before and after partial hepatectomy or a sham operation. Ornithine decarboxylase activity and thymidine kinase activity were assessed as indices of hepatic regeneration. Preoperative levels of estrogen receptor activity in the hepatic cytosol were significantly greater in rats treated with cyclosporine as compared to vehicle treated controls (P<0.01). In contrast, preoperative levels of androgen receptor activity in the cyclosporine-treated and vehicle-treated animals were similar. Following partial hepatectomy, a reduction in the activity of both sex hormone receptors in the hepatic cytosol was observed and was compatible with results described previously in normal animals. Unexpectedly the preoperative levels of ornithine decarboxylase (P<0.01) and thymidine kinase activity (P<0.01) were significantly greater in the rats treated with cyclosporine as compared to the vehicle treated controls. As expected, ornithine decarboxylase activity (at 6 hr) and thymidine kinase activity (at 24 hr) rose and peaked in response to a partial hepatectomy but were significantly greater (P<0.05) in the rats treated with cyclosporine as compared to the vehicle. These results show that cyclosporine treatment causes an increase in the hepatic content of estrogen receptor activity that is associated with an enhanced potential for a regenerative response. These effects of cyclosporine treatment on the sex hormone receptor levels in liver may explain the mechanisms responsible for some of the untoward effects of treatment with this agent. © 1990 Plenum Publishing Corporation

    Changes in Proteasome Structure and Function Caused by HAMLET in Tumor Cells

    Get PDF
    BACKGROUND: Proteasomes control the level of endogenous unfolded proteins by degrading them in the proteolytic core. Insufficient degradation due to altered protein structure or proteasome inhibition may trigger cell death. This study examined the proteasome response to HAMLET, a partially unfolded protein-lipid complex, which is internalized by tumor cells and triggers cell death. METHODOLOGY/PRINCIPAL FINDINGS: HAMLET bound directly to isolated 20S proteasomes in vitro and in tumor cells significant co-localization of HAMLET and 20S proteasomes was detected by confocal microscopy. This interaction was confirmed by co-immunoprecipitation from extracts of HAMLET-treated tumor cells. HAMLET resisted in vitro degradation by proteasomal enzymes and degradation by intact 20S proteasomes was slow compared to fatty acid-free, partially unfolded alpha-lactalbumin. After a brief activation, HAMLET inhibited proteasome activity in vitro and in parallel a change in proteasome structure occurred, with modifications of catalytic (beta1 and beta5) and structural subunits (alpha2, alpha3, alpha6 and beta3). Proteasome inhibition was confirmed in extracts from HAMLET-treated cells and there were indications of proteasome fragmentation in HAMLET-treated cells. CONCLUSIONS/SIGNIFICANCE: The results suggest that internalized HAMLET is targeted to 20S proteasomes, that the complex resists degradation, inhibits proteasome activity and perturbs proteasome structure. We speculate that perturbations of proteasome structure might contribute to the cytotoxic effects of unfolded protein complexes that invade host cells

    A new scoring system in Cystic Fibrosis: statistical tools for database analysis – a preliminary report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cystic fibrosis is the most common fatal genetic disorder in the Caucasian population. Scoring systems for assessment of Cystic fibrosis disease severity have been used for almost 50 years, without being adapted to the milder phenotype of the disease in the 21<sup>st </sup>century. The aim of this current project is to develop a new scoring system using a database and employing various statistical tools. This study protocol reports the development of the statistical tools in order to create such a scoring system.</p> <p>Methods</p> <p>The evaluation is based on the Cystic Fibrosis database from the cohort at the Royal Children's Hospital in Melbourne. Initially, unsupervised clustering of the all data records was performed using a range of clustering algorithms. In particular incremental clustering algorithms were used. The clusters obtained were characterised using rules from decision trees and the results examined by clinicians. In order to obtain a clearer definition of classes expert opinion of each individual's clinical severity was sought. After data preparation including expert-opinion of an individual's clinical severity on a 3 point-scale (mild, moderate and severe disease), two multivariate techniques were used throughout the analysis to establish a method that would have a better success in feature selection and model derivation: 'Canonical Analysis of Principal Coordinates' and 'Linear Discriminant Analysis'. A 3-step procedure was performed with (1) selection of features, (2) extracting 5 severity classes out of a 3 severity class as defined per expert-opinion and (3) establishment of calibration datasets.</p> <p>Results</p> <p>(1) Feature selection: CAP has a more effective "modelling" focus than DA.</p> <p>(2) Extraction of 5 severity classes: after variables were identified as important in discriminating contiguous CF severity groups on the 3-point scale as mild/moderate and moderate/severe, Discriminant Function (DF) was used to determine the new groups mild, intermediate moderate, moderate, intermediate severe and severe disease. (3) Generated confusion tables showed a misclassification rate of 19.1% for males and 16.5% for females, with a majority of misallocations into adjacent severity classes particularly for males.</p> <p>Conclusion</p> <p>Our preliminary data show that using CAP for detection of selection features and Linear DA to derive the actual model in a CF database might be helpful in developing a scoring system. However, there are several limitations, particularly more data entry points are needed to finalize a score and the statistical tools have further to be refined and validated, with re-running the statistical methods in the larger dataset.</p

    Hypercholesterolemia downregulates autophagy in the rat heart

    Get PDF
    Background: We have previously shown that efficiency of ischemic conditioning is diminished in hypercholesterolemia and that autophagy is necessary for cardioprotection. However, it is unknown whether isolated hypercholesterolemia disturbs autophagy or the mammalian target of rapamycin (mTOR) pathways. Therefore, we investigated whether isolated hypercholesterolemia modulates cardiac autophagy-related pathways or programmed cell death mechanisms such as apoptosis and necroptosis in rat heart. Methods: Male Wistar rats were fed either normal chow (NORM; n=9) or with 2% cholesterol and 0.25% cholic acid-enriched diet (CHOL; n=9) for 12 weeks. CHOL rats exhibited a 41% increase in plasma total cholesterol level over that of NORM rats (4.09mmol/L vs. 2.89mmol/L) at the end of diet period. Animals were sacrificed, hearts were excised and briefly washed out. Left ventricles were snap-frozen for determination of markers of autophagy, mTOR pathway, apoptosis, and necroptosis by Western blot. Results: Isolated hypercholesterolemia was associated with a significant reduction in expression of cardiac autophagy markers such as LC3-II, Beclin-1, Rubicon and RAB7 as compared to controls. Phosphorylation of ribosomal S6, a surrogate marker for mTOR activity, was increased in CHOL samples. Cleaved caspase-3, a marker of apoptosis, increased in CHOL hearts, while no difference in the expression of necroptotic marker RIP1, RIP3 and MLKL was detected between treatments. Conclusions: This is the first comprehensive analysis of autophagy and programmed cell death pathways of apoptosis and necroptosis in hearts of hypercholesterolemic rats. Our data show that isolated hypercholesterolemia suppresses basal cardiac autophagy and that the decrease in autophagy may be a result of an activated mTOR pathway. Reduced autophagy was accompanied by increased apoptosis, while cardiac necroptosis was not modulated by isolated hypercholesterolemia. Decreased basal autophagy and elevated apoptosis may be responsible for the loss of cardioprotection reported in hypercholesterolemic animals

    Bnip3 as a Dual Regulator of Mitochondrial Turnover and Cell Death in the Myocardium

    Get PDF
    The Bcl-2 adenovirus E1B 19 kDa-interacting protein 3 (Bnip3) is a pro-apoptotic BH3-only protein associated with the pathogenesis of many diseases, including cancer and cardiovascular disease. Studies over the past decade have provided insight into how Bnip3 induces mitochondrial dysfunction and subsequent cell death in cells. More recently, Bnip3 was identified as a potent inducer of autophagy in cells. However, the functional role of Bnip3-mediated autophagy has been difficult to define and remains controversial. New evidence has emerged suggesting that Bnip3 is an important regulator of mitochondrial turnover via autophagy in the myocardium. Also, studies suggest that the induction of Bnip3-dependent mitochondrial autophagy is a separately activated process independent of Bax/Bak and the mitochondrial permeability transition pore (mPTP). This review discusses the current understanding of the functional role that Bnip3 plays in the myocardium. Recent studies suggest that Bnip3 might have a dual function in the myocardium, where it regulates both mitochondrial turnover via autophagy and cell death and that these are two separate processes activated by Bnip3

    Ischemia-Reperfusion Injury Leads to Distinct Temporal Cardiac Remodeling in Normal versus Diabetic Mice

    Get PDF
    Diabetes is associated with higher incidence of myocardial infarction (MI) and increased propensity for subsequent events post-MI. Here we conducted a temporal analysis of the influence of diabetes on cardiac dysfunction and remodeling after ischemia reperfusion (IR) injury in mice. Diabetes was induced using streptozotocin and IR performed by ligating the left anterior descending coronary artery for 30 min followed by reperfusion for up to 42 days. We first evaluated changes in cardiac function using echocardiography after 24 hours reperfusion and observed IR injury significantly decreased the systolic function, such as ejection fraction, fractional shortening and end systolic left ventricular volume (LVESV) in both control and diabetic mice. The longitudinal systolic and diastolic strain rate were altered after IR, but there were no significant differences between diabetic mice and controls. However, a reduced ability to metabolize glucose was observed in the diabetic animals as determined by PET-CT scanning using 2-deoxy-2-(18F)fluoro-D-glucose. Interestingly, after 24 hours reperfusion diabetic mice showed a reduced infarct size and less apoptosis indicated by TUNEL analysis in heart sections. This may be explained by increased levels of autophagy detected in diabetic mice hearts. Similar increases in IR-induced macrophage infiltration detected by CD68 staining indicated no change in inflammation between control and diabetic mice. Over time, control mice subjected to IR developed mild left ventricular dilation whereas diabetic mice exhibited a decrease in both end diastolic left ventricular volume and LVESV with a decreased intraventricular space and thicker left ventricular wall, indicating concentric hypertrophy. This was associated with marked increases in fibrosis, indicted by Masson trichrome staining, of heart sections in diabetic IR group. In summary, we demonstrate that diabetes principally influences distinct IR-induced chronic changes in cardiac function and remodeling, while a smaller infarct size and elevated levels of autophagy with similar cardiac function are observed in acute phase

    High Tumour Cannabinoid CB1 Receptor Immunoreactivity Negatively Impacts Disease-Specific Survival in Stage II Microsatellite Stable Colorectal Cancer

    Get PDF
    BACKGROUND: There is good evidence in the literature that the cannabinoid system is disturbed in colorectal cancer. In the present study, we have investigated whether CB(1) receptor immunoreactive intensity (CB(1)IR intensity) is associated with disease severity and outcome. METHODOLOGY/PRINCIPAL FINDINGS: CB(1)IR was assessed in formalin-fixed, paraffin-embedded specimens collected with a consecutive intent during primary tumour surgical resection from a series of cases diagnosed with colorectal cancer. Tumour centre (n = 483) and invasive front (n = 486) CB(1)IR was scored from 0 (absent) to 3 (intense staining) and the data was analysed as a median split i.e. CB(1)IR <2 and ≥2. In microsatellite stable, but not microsatellite instable tumours (as adjudged on the basis of immunohistochemical determination of four mismatch repair proteins), there was a significant positive association of the tumour grade with the CB(1)IR intensity. The difference between the microsatellite stable and instable tumours for this association of CB(1)IR was related to the CpG island methylation status of the cases. Cox proportional hazards regression analyses indicated a significant contribution of CB(1)IR to disease-specific survival in the microsatellite stable tumours when adjusting for tumour stage. For the cases with stage II microsatellite stable tumours, there was a significant effect of both tumour centre and front CB(1)IR upon disease specific survival. The 5 year probabilities of event-free survival were: 85±5 and 66±8%; tumour interior, 86±4% and 63±8% for the CB(1)IR<2 and CB(1)IR≥2 groups, respectively. CONCLUSIONS/SIGNIFICANCE: The level of CB(1) receptor expression in colorectal cancer is associated with the tumour grade in a manner dependent upon the degree of CpG hypermethylation. A high CB(1)IR is indicative of a poorer prognosis in stage II microsatellite stable tumour patients

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Self-Assembly in Monoelaidin Aqueous Dispersions: Direct Vesicles to Cubosomes Transition

    Get PDF
    Background: In the present study, synchrotron small-angle X-ray scattering (SAXS) and Cryo-TEM were used to characterize the temperature-induced structural transitions of monoelaidin (ME) aqueous dispersion in the presence of the polymeric stabilizer F127. We prove that the direct transition from vesicles to cubosomes by heating this dispersion is possible. The obtained results were compared with the fully hydrated bulk ME phase. Methodology/principal findings: Our results indicate the formation of ME dispersion, which is less stable than that based on the congener monoolein (MO). In addition, the temperature-dependence behavior significantly differs from the fully hydrated bulk phase. SAXS findings indicate a direct L(alpha)-V(2) internal transition in the dispersion. While the transition temperature is conserved in the dispersion, the formed cubosomes with internal Im3m symmetry clearly contain more water and this ordered interior is retained over a wider temperature range as compared to its fully hydrated bulk system. At 25 degrees C, Cryo-TEM observations reveal the formation of most likely closely packed onion-like vesicles. Above the lamellar to non-lamellar phase transition at 65 degrees C, flattened cubosomes with an internal nanostructure are observed. However, they have only arbitrary shapes and thus, their morphology is significantly different from that of the well-shaped analogous MO cubosome and hexosome particles. Conclusions/significance: Our study reveals a direct liposomes-cubosomes transition in ME dispersion. The obtained results suggest that the polymeric stabilizer F127 especially plays a significant role in the membrane fusion processes. F127 incorporates in considerable amount into the internal nanostructure and leads to the formation of a highly swollen Im3m phase
    corecore