320 research outputs found

    A model for selection of eyespots on butterfly wings

    Get PDF
    The development of eyespots on the wing surface of butterflies of the family Nympalidae is one of the most studied examples of biological pattern formation.However, little is known about the mechanism that determines the number and precise locations of eyespots on the wing. Eyespots develop around signaling centers, called foci, that are located equidistant from wing veins along the midline of a wing cell (an area bounded by veins). A fundamental question that remains unsolved is, why a certain wing cell develops an eyespot, while other wing cells do not. We illustrate that the key to understanding focus point selection may be in the venation system of the wing disc. Our main hypothesis is that changes in morphogen concentration along the proximal boundary veins of wing cells govern focus point selection. Based on previous studies, we focus on a spatially two-dimensional reaction-diffusion system model posed in the interior of each wing cell that describes the formation of focus points. Using finite element based numerical simulations, we demonstrate that variation in the proximal boundary condition is sufficient to robustly select whether an eyespot focus point forms in otherwise identical wing cells. We also illustrate that this behavior is robust to small perturbations in the parameters and geometry and moderate levels of noise. Hence, we suggest that an anterior-posterior pattern of morphogen concentration along the proximal vein may be the main determinant of the distribution of focus points on the wing surface. In order to complete our model, we propose a two stage reaction-diffusion system model, in which an one-dimensional surface reaction-diffusion system, posed on the proximal vein, generates the morphogen concentrations that act as non-homogeneous Dirichlet (i.e., fixed) boundary conditions for the two-dimensional reaction-diffusion model posed in the wing cells. The two-stage model appears capable of generating focus point distributions observed in nature. We therefore conclude that changes in the proximal boundary conditions are sufficient to explain the empirically observed distribution of eyespot focus points on the entire wing surface. The model predicts, subject to experimental verification, that the source strength of the activator at the proximal boundary should be lower in wing cells in which focus points form than in those that lack focus points. The model suggests that the number and locations of eyespot foci on the wing disc could be largely controlled by two kinds of gradients along two different directions, that is, the first one is the gradient in spatially varying parameters such as the reaction rate along the anterior-posterior direction on the proximal boundary of the wing cells, and the second one is the gradient in source values of the activator along the veins in the proximal-distal direction of the wing cell

    Transferable integrons of Gram-negative bacteria isolated from the gut of a wild boar in the buffer zone of a national park

    Get PDF
    The aim of this study was to determine the presence of integron-bearing Gram-negative bacteria in the gut of a wild boar (Sus scrofa L.) shot in the buffer zone of a national park. Five Gram-negative strains of Escherichia coli, Serratia odorifera, Hafnia alvei and Pseudomonas sp. were isolated. Four of these strains had class 2 integrase (intI2), and one harbored class 1 integrase (intI1). The integron-positive strains were multiresistant, i.e., resistant to at least three unrelated antibiotics. All of the integrons were transferred to E. coli J-53 (RifR) in a conjugation assay. The results showed that a number of multiresistant, integron-containing bacterial strains of different genera may inhabit a single individual of a wild animal, allowing the possibility of transfer of antimicrobial resistance genes

    Triad3a induces the degradation of early necrosome to limit RipK1-dependent cytokine production and necroptosis.

    Get PDF
    Understanding the molecular signaling in programmed cell death is vital to a practical understanding of inflammation and immune cell function. Here we identify a previously unrecognized mechanism that functions to downregulate the necrosome, a central signaling complex involved in inflammation and necroptosis. We show that RipK1 associates with RipK3 in an early necrosome, independent of RipK3 phosphorylation and MLKL-induced necroptotic death. We find that formation of the early necrosome activates K48-ubiquitin-dependent proteasomal degradation of RipK1, Caspase-8, and other necrosomal proteins. Our results reveal that the E3-ubiquitin ligase Triad3a promotes this negative feedback loop independently of typical RipK1 ubiquitin editing enzymes, cIAPs, A20, or CYLD. Finally, we show that Triad3a-dependent necrosomal degradation limits necroptosis and production of inflammatory cytokines. These results reveal a new mechanism of shutting off necrosome signaling and may pave the way to new strategies for therapeutic manipulation of inflammatory responses

    Discursive positioning and planned change in organizations

    Get PDF
    This study uses discursive positioning theory to explore how planned change messages influence organizational members’ identity and the way they experienced organizational change. Based on an in-depth case study of a home healthcare and hospice organization that engaged in a multiyear planned change process, our analysis suggests that workers experienced salient change messages as constituting unfavorable identities, which were associated with the experiences of violation, recitation, habituation, or reservation. Our study also explores the way discursive and material contexts enabled and constrained the governing board’s change messages as they responded to external and internal audiences. We highlight the importance of viewing messaging as a process of information transfer as well as discursive construction, which has important implications for the way change agents approach issues of sense making, emotionality, resistance, and materiality during planned change processes.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    The motivational drive to natural rewards is modulated by prenatal glucocorticoid exposure

    Get PDF
    Exposure to elevated levels of glucocorticoids (GCs) during neurodevelopment has been identified as a triggering factor for the development of reward-associated disorders in adulthood. Disturbances in the neural networks responsible for the complex processes that assign value to rewards and associated stimuli are critical for disorders such as depression, obsessive–compulsive disorders, obesity and addiction. Essential in the understanding on how cues influence behavior is the Pavlovian–instrumental transfer (PIT), a phenomenon that refers to the capacity of a Pavlovian stimulus that predicts a reward to elicit instrumental responses for that same reward. Here, we demonstrate that in utero exposure to GCs (iuGC) impairs both general and selective versions of the PIT paradigm, suggestive of deficits in motivational drive. The iuGC animals presented impaired neuronal activation pattern upon PIT performance in cortical and limbic regions, as well as morphometric changes and reduced levels of dopamine in prefrontal and orbitofrontal cortices, key regions involved in the integration of Pavlovian and instrumental stimuli. Normalization of dopamine levels rescued this behavior, a process that relied on D2/D3, but not D1, dopamine receptor activation. In summary, iuGC exposure programs the mesocorticolimbic dopaminergic circuitry, leading to a reduction in the attribution of the incentive salience to cues, in a dopamine-D2/D3-dependent manner. Ultimately, these results are important to understand how GCs bias incentive processes, a fact that is particularly relevant for disorders where differential attribution of incentive salience is critical.We thank Pedro Morgado for discussions and help in the technical aspects of PIT procedure. This project was supported by a grant of Institute for the Study of Affective Neuroscience (ISAN) and by Janssen Neuroscience Prize. CS-C, SB, MMC and AJR are recipients of Fundacao para a Ciencia e Tecnologia (FCT) fellowships (CS-C: SFRH/BD/51992/2012; SB: SFRH/BD/89936/2012; MMC: SRFH/BD/51061/2010; AJR: SFRH/BPD/33611/2009)

    LUBAC prevents lethal dermatitis by inhibiting cell death induced by TNF, TRAIL and CD95L

    Get PDF
    The linear ubiquitin chain assembly complex (LUBAC), composed of HOIP, HOIL-1 and SHARPIN, is required for optimal TNF-mediated gene activation and to prevent cell death induced by TNF. Here, we demonstrate that keratinocyte-specific deletion of HOIP or HOIL-1 (E-KO) results in severe dermatitis causing postnatal lethality. We provide genetic and pharmacological evidence that the postnatal lethal dermatitis in HoipE-KO and Hoil-1E-KO mice is caused by TNFR1-induced, caspase-8-mediated apoptosis that occurs independently of the kinase activity of RIPK1. In the absence of TNFR1, however, dermatitis develops in adulthood, triggered by RIPK1-kinase-activity-dependent apoptosis and necroptosis. Strikingly, TRAIL or CD95L can redundantly induce this disease-causing cell death, as combined loss of their respective receptors is required to prevent TNFR1-independent dermatitis. These findings may have implications for the treatment of patients with mutations that perturb linear ubiquitination and potentially also for patients with inflammation-associated disorders that are refractory to inhibition of TNF alone

    Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

    Get PDF
    Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death

    Cytoskeletal Signaling: Is Memory Encoded in Microtubule Lattices by CaMKII Phosphorylation?

    Get PDF
    Memory is attributed to strengthened synaptic connections among particular brain neurons, yet synaptic membrane components are transient, whereas memories can endure. This suggests synaptic information is encoded and ‘hard-wired’ elsewhere, e.g. at molecular levels within the post-synaptic neuron. In long-term potentiation (LTP), a cellular and molecular model for memory, post-synaptic calcium ion (Ca2+) flux activates the hexagonal Ca2+-calmodulin dependent kinase II (CaMKII), a dodacameric holoenzyme containing 2 hexagonal sets of 6 kinase domains. Each kinase domain can either phosphorylate substrate proteins, or not (i.e. encoding one bit). Thus each set of extended CaMKII kinases can potentially encode synaptic Ca2+ information via phosphorylation as ordered arrays of binary ‘bits’. Candidate sites for CaMKII phosphorylation-encoded molecular memory include microtubules (MTs), cylindrical organelles whose surfaces represent a regular lattice with a pattern of hexagonal polymers of the protein tubulin. Using molecular mechanics modeling and electrostatic profiling, we find that spatial dimensions and geometry of the extended CaMKII kinase domains precisely match those of MT hexagonal lattices. This suggests sets of six CaMKII kinase domains phosphorylate hexagonal MT lattice neighborhoods collectively, e.g. conveying synaptic information as ordered arrays of six “bits”, and thus “bytes”, with 64 to 5,281 possible bit states per CaMKII-MT byte. Signaling and encoding in MTs and other cytoskeletal structures offer rapid, robust solid-state information processing which may reflect a general code for MT-based memory and information processing within neurons and other eukaryotic cells

    Integrative analysis of gene expression and copy number alterations using canonical correlation analysis

    Get PDF
    Supplementary Figure 1. Representation of the samples from the tuning set by their coordinates in the first two pairs of features (extracted from the tuning set) using regularized dual CCA, with regularization parameters tx = 0.9, ty = 0.3 (left panel), and PCA+CCA (right panel). We show the representations with respect to both the copy number features and the gene expression features in a superimposed way, where each sample is represented by two markers. The filled markers represent the coordinates in the features extracted from the copy number variables, and the open markers represent coordinates in the features extracted from the gene expression variables. Samples with different leukemia subtypes are shown with different colors. The first feature pair distinguishes the HD50 group from the rest, while the second feature pair represents the characteristics of the samples from the E2A/PBX1 subtype. The high canonical correlation obtained for the tuning samples with regularized dual CCA is apparent in the left panel, where the two points for each sample coincide. Nevertheless, the extracted features have a high generalization ability, as can be seen in the left panel of Figure 5, showing the representation of the validation samples. 1 Supplementary Figure 2. Representation of the samples from the tuning set by their coordinates in the first two pairs of features (extracted from the tuning set) using regularized dual CCA, with regularization parameters tx = 0, ty = 0 (left panel), and tx = 1, ty = 1 (right panel). We show the representations with respect to both the copy number features and the gene expression features in a superimposed way, where each sample is represented by tw

    Progression of kidney disease in type 2 diabetes – beyond blood pressure control: an observational study

    Get PDF
    BACKGROUND: The risk factors for progression of chronic kidney disease (CKD) in type 2 diabetes mellitus (DM) have not been fully elucidated. Although uncontrolled blood pressure (BP) is known to be deleterious, other factors may become more important once BP is treated. METHODS: All patients seen in the outpatient clinics of our hospital between January 1993 and September 2002 with type 2 DM and clinical evidence of CKD were evaluated. Progression of kidney disease was evaluated by rate of decline of glomerular filtration rate (GFR) as estimated from the simplified MDRD formula. Variables associated with progression in univariate analyses were examined by multivariate analysis to determine the factors independently associated with kidney disease progression. RESULTS: 343 patients (mean age 69 years; all male; 77% Caucasian) were studied. Mean BP, glycated hemoglobin, and serum cholesterol during the study period were 138/72 mmHg, 8.1%, and 4.8 mmol/L, respectively. Mean decline of GFR was 4.5 ml min-1 1.73 m(2)-1 yr-1 (range -14 to +32). Low initial serum albumin (p < 0.001), black race (p < 0.001), and degree of proteinuria (p = 0.002), but not blood pressure, glycated hemoglobin, or serum cholesterol, were independently associated with progression. CONCLUSION: In a cohort of diabetic patients with CKD in whom mean BP was < 140/80 mmHg, the potentially remediable factors hypoalbuminemia and proteinuria but not blood pressure were independently associated with progression of kidney disease. Further understanding of the relationship between these factors and kidney disease progression may lead to beneficial therapies in such patients
    corecore