89 research outputs found

    Animal welfare, a driving force to change pig production systems?

    Get PDF
    Animal welfare requirements are expected to affect the future development of pig production systems in France. Rules and regulations play a major role in this evolution. This could be in favour of larger farms, better able to sustain their economic burden. The development of alternative production systems should also be in favour of improved animal welfare. However, French consumer demand for this type of production remains very low due to higher prices. On the other hand, simultaneous improvement of animal performance and welfare provides an interesting approach, as the price increase due to the welfare-related cost may be at least partly offset by enhanced animal performance.La prise en compte du bien-être animal devrait jouer un rôle important dans l'évolution des systèmes de production porcine en France. La réglementation y contribue de manière prépondérante. Elle pourrait favoriser le développement de structures de plus grande taille, mieux armées pour faire face à ses conséquences économiques. Les élevages labellisés incluent dans leurs cahiers des charges le respect du bien-être des animaux. De ce fait leur développement contribue à celui du respect du bien-être animal. Cependant, la demande des consommateurs pour ce type de productions reste jusqu'à présent très limitée en raison de leurs prix plus élevés. L'amélioration conjointe du bien-être et des performances constitue une approche intéressante, dans la mesure où l'augmentation des coûts liés au bien-être peut être, tout au moins en partie, compensée par l'accroissement des performances zootechniques

    IRIS – Institut de recherche interdisciplinaire sur les enjeux sociaux, sciences sociales, politiques, santé

    Get PDF
    Jonathan Friedman, directeur d’étudesNatacha Gagné, professeure agrégée à l’Université d’OttawaPaula Lopez-Caballero, postdoctorante CERI-Sciences PoMarie Salaün, maître de conférences à l’Université Paris-V/Descartes Questions autochtones contemporaines Cette quatrième année du séminaire a vu l’organisation de douze séances et d’une table ronde, du 4 novembre 2010 au 3 février 2011. En moyenne, le séminaire a regroupé une trentaine de participants, ce qui témoigne d’un intérêt grandissant po..

    Altimetry for the future: Building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the ‘‘Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    Altimetry for the future: building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the “Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    Prise en charge de l'obésité et du surpoids à l'Ile de la Réunion par des régimes hypocaloriques-hyperprotidiques (étude rétrospective de 91 cas réalisée au cabinet du Dr Duport (St Paul))

    No full text
    BREST-BU Médecine-Odontologie (290192102) / SudocSAINT DENIS/REUNION-Droit Lettre (974112101) / SudocPARIS-BIUM (751062103) / SudocSudocFranceF

    Stratégies d'alimentation des truies. Effets des parois végétales

    No full text
    International audienc

    Gestion, des connaissances

    No full text
    2.1. Acquisition des connaissances et mémoires collectives (Rose Dieng-Kuntz) 2.1.1. Ingénierie des connaissances L’ingénierie des connaissances offre des concepts, des modèles et des méthodes pour : analyser la création et l’utilisation des connaissances individuelles ou collectives dans différents contextes ; guider l’acquisition des connaissances à partir de sources humaines ou via l’inter-. prétation des productions (en particulier les documents) matérialisant leurs connaissances ; modéli..
    corecore