40 research outputs found

    Expression of connexins in human preimplantation embryos in vitro

    Get PDF
    Intercellular communication via gap junctions is required to coordinate developmental processes in the mammalian embryo. We have investigated if the connexin (Cx) isoforms known to form gap junctions in rodent preimplantation embryos are also expressed in human embryos, with the aim of identifying species differences in communication patterns in early development. Using a combination of polyA PCR and immunocytochemistry we have assessed the expression of Cx26, Cx31, Cx32, Cx40, Cx43 and Cx45 which are thought to be important in early rodent embryos. The results demonstrate that Cx31 and Cx43 are the main connexin isoforms expressed in human preimplantation embryos and that these isoforms are co-expressed in the blastocyst. Cx45 protein is expressed in the blastocyst but the protein may be translated from a generally low level of transcripts: which could only be detected in the PN to 4-cell embryos. Interestingly, Cx40, which is expressed by the extravillous trophoblast in the early human placenta, was not found to be expressed in the blastocyst trophectoderm from which this tissue develops. All of the connexin isoforms in human preimplantation embryos are also found in rodents pointing to a common regulation of these connexins in development of rodent and human early embryos and perhaps other species

    Investigating the role of CD44 and hyaluronate in embryo-epithelial interaction using an in vitro model

    Get PDF
    Implantation failure is an important impediment to increasing success rates in assisted reproductive technologies. Knowledge of the cascade of morphological and molecular events at implantation remains limited. Cell surface CD44 and hyaluronate (HA) have been reported in the uterus, but a role in intercellular interaction at implantation remains to be evaluated. Mouse embryos were co-cultured with human Ishikawa endometrial epithelial monolayers over 2 days. Attachment was tenuous during the first 24 h, after which it became stable, leading to breaching of the monolayer. The effects of enzymatically reducing the density of HA, or introducing a function-blocking antibody to CD44, were monitored during progression from weak to stable embryonic attachment. Hyaluronidase-mediated removal of surface HA from the epithelial cells enhanced the speed of attachment, while a similar treatment of embryos had no effect. The antibody to CD44 caused retardation of initial attachment. These results suggest that CD44–HA binding could be employed by embryos during initial docking, but the persistence of HA in epithelial cells might be detrimental to later stages of implantation by retarding attainment of stable attachment

    Small x resummation in collinear factorisation

    Full text link
    The summation of the small x-corrections to hard-scattering QCD amplitudes by collinear factorisation method is reconsidered and the K-factor is derived in leading ln x approximation with a result differing from the corresponding expression by Catani and Hautmann (Nucl. Phys. B 427, 475, 1994). The significance of the difference is demonstrated in the examples of structure function F_L and of exclusive vector meson electroproduction. The formulation covers the channels of non-vanishing conformal spin n paving the way for new applications.Comment: 34 pages, 6 figure

    Central exclusive production of dijets at hadronic colliders

    Full text link
    In view of the recent diffractive dijet data from CDF run II, we critically re-evaluate the standard approach to the calculation of central production of dijets in quasi-elastic hadronic collisions. We find that the process is dominated by the non-perturbative region, and that even perturbative ingredients, such as the Sudakov form factor, are not under theoretical control. Comparison with data allows us to fix some of the uncertainties. Although we focus on dijets, our arguments apply to other high-mass central systems, such as the Higgs boson.Comment: 37 pages, 18 figures. Two new appendices, and a discussion of the upper scale of the Sudakov form factor are introduced. The text about the calculation of the uncertainties has been rewritte

    Measurement of the photon+b+b-jet production differential cross section in ppˉp\bar{p} collisions at \sqrt{s}=1.96~\TeV

    Get PDF
    We present measurements of the differential cross section dsigma/dpT_gamma for the inclusive production of a photon in association with a b-quark jet for photons with rapidities |y_gamma|< 1.0 and 30<pT_gamma <300 GeV, as well as for photons with 1.5<|y_gamma|< 2.5 and 30< pT_gamma <200 GeV, where pT_gamma is the photon transverse momentum. The b-quark jets are required to have pT>15 GeV and rapidity |y_jet| < 1.5. The results are based on data corresponding to an integrated luminosity of 8.7 fb^-1, recorded with the D0 detector at the Fermilab Tevatron ppˉp\bar{p} Collider at sqrt(s)=1.96 TeV. The measured cross sections are compared with next-to-leading order perturbative QCD calculations using different sets of parton distribution functions as well as to predictions based on the kT-factorization QCD approach, and those from the Sherpa and Pythia Monte Carlo event generators.Comment: 10 pages, 9 figures, submitted to Phys. Lett.

    Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma

    Get PDF
    Genome-wide association studies (GWAS) have transformed our understanding of susceptibility to multiple myeloma (MM), but much of the heritability remains unexplained. We report a new GWAS, a meta-analysis with previous GWAS and a replication series, totalling 9974 MM cases and 247,556 controls of European ancestry. Collectively, these data provide evidence for six new MM risk loci, bringing the total number to 23. Integration of information from gene expression, epigenetic profiling and in situ Hi-C data for the 23 risk loci implicate disruption of developmental transcriptional regulators as a basis of MM susceptibility, compatible with altered B-cell differentiation as a key mechanism. Dysregulation of autophagy/apoptosis and cell cycle signalling feature as recurrently perturbed pathways. Our findings provide further insight
    corecore