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Abstract 21 

Implantation failure is an important impediment to increasing success rates in assisted 22 

reproductive technologies (ART). Knowledge of the cascade of morphological and 23 

molecular events at implantation remains limited.  Cell surface CD44 and hyaluronate 24 

(HA) have been reported in the uterus, but a role in intercellular interaction at 25 

implantation remains to be evaluated. Mouse embryos were co-cultured with human 26 

Ishikawa endometrial epithelial monolayers over two days. Attachment was tenuous 27 

during the first 24 hrs, after which it became stable, leading to breaching of the 28 

monolayer. The effects of enzymatically reducing the density of HA, or introducing a 29 

function-blocking antibody to CD44, were monitored during progression from weak to 30 

stable embryonic attachment. Hyaluronidase-mediated removal of surface HA from the 31 

epithelial cells enhanced the speed of attachment, while a similar treatment of 32 

embryos had no effect.  The antibody to CD44 caused retardation of initial attachment. 33 

These results suggest that CD44-HA binding could be employed by embryos during 34 

initial docking, but the persistence of HA in epithelial cells might be detrimental to later 35 

stages of implantation by retarding attainment of stable attachment.     36 

Keywords: CD44, hyaluronate, implantation, endometrium, embryo adhesion. 37 

Introduction 38 

CD44 is a cell surface glycoprotein that acts as a receptor for hyaluronan (HA) as well 39 

as other ligands including osteopontin (OPN), collagens and matrix metalloproteinase 40 

9 (Misra et al., 2015, Senbanjo and Chellaiah, 2017). CD44 is present in a wide range 41 

of cells, with a complex pattern of splice variants and glycoforms, including the 42 

trophectoderm of both human and mouse blastocysts (Campbell et al., 1995, Lu et al., 43 

2002) and endometrial tissue. In the mid secretory phase, when embryo implantation 44 
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occurs, CD44 is found at the lateral and apical surface of both glandular and luminal 45 

epithelial cells (Afify et al., 2006, Albers et al., 1995, Behzad et al., 1994, Fujita et al., 46 

1994, Griffith et al., 2010, Saegusa et al., 1998, Saegusa and Okayasu, 1998). Ligand 47 

binding to CD44 leads to changes in cell motility, gene expression and growth 48 

(Senbanjo and Chellaiah, 2017). The fucosyl transferase FUT4 catalyses the addition 49 

of terminal α1.3-fucosyl residues to glycan on CD44, leading in turn to activation of the 50 

Wnt/β-catenin signalling pathway (Zheng et al., 2017), which is associated with 51 

endometrial receptivity to implantation (Mohamed et al., 2005), though an upstream 52 

ligand sensitive to glycoform has not been identified.  53 

HA is present in uterine fluid and on the surface of the endometrial epithelium 54 

(Fouladi-Nashta et al., 2017). Treatment of mouse embryos with HA promoted 55 

implantation (Gardner et al., 1999), and HA-containing embryo transfer medium used 56 

in ART has been reported to improve implantation and increase live birth rates in 57 

humans (Bontekoe et al., 2014). CD44-HA interactions have therefore been implicated 58 

in embryo attachment during the early stages of implantation. HA is proposed to bridge 59 

between embryo and endometrial epithelium through CD44 (and possibly other 60 

receptors), while OPN dimers (Goldsmith et al., 2002) may bridge CD44 and/or integrin 61 

αvβ3. OPN is a strong candidate adhesion molecule for implantation (Johnson et al., 62 

2014) and we have previously shown that integrin αvβ3-OPN interactions contribute to 63 

embryo attachment to epithelium in vitro (Kang et al., 2014). Recent experimental 64 

manipulation of HA in the sheep uterus however suggests that endometrial HA may act 65 

to inhibit implantation (Fouladi-Nashta et al., 2017, Marei et al., 2017).  66 

We have used Ishikawa cells as a model endometrial epithelium for examining 67 

interaction with blastocyst stage embryos (Ruane et al., 2017, Ruane et al., 2018, 68 
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Singh et al., 2010). When embryos are transferred to confluent Ishikawa cell 69 

monolayers, initial attachment to the apical surface is followed by breaching and 70 

trophoblast outgrowth. A proteomic profile of glycoproteins exposed at the apical 71 

surface of confluent, polarised Ishikawa cells included CD44 (Aplin and Ruane, 2017, 72 

Singh and Aplin, 2015, Singh et al., 2010), verifying that these cells are suitable for 73 

evaluating its biological activity in this context. Here we examine the effects of blocking 74 

CD44 as well as stripping cell surface HA on attachment of mouse embryos. 75 

Materials and Methods 76 

Cell culture  77 

Ishikawa cells (ECACC 99040201) were maintained at 37ºC, 95% air and 5% CO2 in 78 

DMEM (Sigma) containing 10% fetal bovine serum (Sigma), 2mM L-glutamine, 79 

100µg/ml streptomycin and 100IU/ml penicillin (Sigma). Cells were grown on 2% 80 

Matrigel-coated 13mm glass coverslips (Sigma) in 24-well plates (Corning) up to 81 

passage 25.  82 

Mouse embryos  83 

Experiments were carried out under UK Home Office project license PPL 70/07838, 84 

and authorised by the Animal Welfare and Ethical Review Board of the University of 85 

Manchester, according to the Animal Act, 1986. Eight-week-old CD1 female mice 86 

(Charles River) were superovulated (by intraperitoneal injection of 5 IU pregnant 87 

mare serum gonadotrophin (Intervet), followed by 5 IU human chorionic 88 

gonadotrophin (Intervet) 46 hrs later) and time-mated. The 2-cell embryos were 89 

flushed from the oviduct at E (embryo day) 1.5. Embryos were cultured in KSOM 90 

medium (Millipore) containing 0.4% BSA (Sigma) under oil (Vitrolife) to E4.5 then 91 
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artificially hatched from the zona pellucidae using acid Tyrode’s solution (pH 2.5) 92 

(Sigma).  93 

Cell spreading assay 94 

Flat-bottom 48-well plates (Corning) were left uncoated or coated overnight with 95 

5µg/ml osteopontin (R&D Systems), bovine serum albumin (BSA, Sigma) or poly-96 

L-lysine (Sigma). Wells were then exposed to a solution of 1mg/ml heat-denatured 97 

BSA (Sigma) for 1 hr. Endometrial cells were trypsinised and incubated with various 98 

concentrations of antibody (H-300-L rabbit anti-CD44 (Santa Cruz) or IgG from rabbit 99 

serum as negative control, (Sigma); 5, 10 or 20µg/ml in serum-free medium (Teramoto 100 

et al., 2005) for 5 min at room temperature then plated into wells at 2000 cells/well. 101 

Cells were cultured for 1 hr then imaged using phase contrast microscopy and 102 

analysed using ImageJ. 103 

In-vitro attachment assay  104 

Confluent endometrial cells were incubated in serum-free medium (DMEM, 2mM 105 

L-glutamine, 100µg/ml streptomycin and 100IU/ml penicillin) for 24 hrs prior to 106 

co-culture with hatched E4.5 mouse blastocysts (3 per well), as previously described 107 

(Ruane et al., 2017).  108 

In some experiments, medium was spiked with antibody (H-300-L rabbit anti-CD44 or 109 

IgG from rabbit serum) at 20µg/ml (determined by data from the cell spreading 110 

inhibition assay), either just prior to addition of E4.5 embryos or 24 hrs later just prior to 111 

detachment of E5.5 embryos, by gently flushing with 60μl medium. Mouse embryos 112 

flushed at day 4.5 require 28 hrs of incubation with cells to activate them for stable 113 

attachment; flushing restored all embryos to an unattached state at the start of the 114 
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antibody incubation period. Other experiments involved pre-treatment of embryos and / 115 

or Ishikawa cells with hyaluronidase prior to co-culture. Here hatched E4.5 blastocysts 116 

were cultured in KSOM, 0.4% BSA to E5.5, then incubated with, or without, 500 IU/ml 117 

hyaluronidase (Sigma) in KSOM, 0.4% BSA for 30 minutes before transfer onto treated 118 

or untreated cells. Ishikawa cells were treated by culturing as usual for 24 hrs, 119 

removing and retaining the conditioned medium during a 30 min incubation with 500 120 

IU/ml hyaluronidase (in fresh serum-free culture medium), then replacing the retained 121 

medium before adding treated or untreated E5.5 embryos.  122 

In all experiments, attachment stability was assessed as previously described (Ruane 123 

et al., 2017), every 4 hrs during the first 12 hrs of co-culture then at 24, 28, 32, 36 hrs 124 

and finally at 48 hrs (E6.5 of mouse embryo development) using an inverted phase 125 

contrast microscope (Evos XL Core). Co-cultures were then fixed with 4% PFA for 20 126 

min at room temperature and stored under PBS at 4°C. 127 

Single embryo fluorescence staining 128 

Hatched E4.5 embryos were fixed in a staining solution (3% BSA in PBS) containing 129 

1% PFA for 20 min, quenched in 50mM ammonium chloride for 5 min, then 130 

permeabilised using 0.5% Triton-X100 PBS solution for 6 min. Blastocysts were 131 

incubated overnight at 4°C in a 25µl drop of staining solution containing H-300-L rabbit 132 

anti-CD44 or IgG from rabbit serum under mineral oil (Sigma) followed by staining 133 

solution containing an Alexa Fluor 488-labelled secondary antibody (Life 134 

Technologies) and 4',6-diamidino-2-phenylindole (DAPI, Sigma) for 1 hr. Embryos 135 

were mounted in a poly-L lysine-coated chamber of 3% 1,4-diazabicyclo[2.2.2]octane 136 

(DABCO, Sigma) in PBS. 137 

Endometrial/endothelial cells and embryo attachment staining 138 
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PFA-fixed cells and co-cultures were quenched with 50mM ammonium chloride before 139 

permeabilisation in 0.5% Triton-X100 PBS. Mouse monoclonal anti-CD44 antibody 140 

(5F12, NeoMarkers Fremont) and IgG from mouse serum (negative control, Sigma) 141 

and Alexa Fluor 488-labelled secondary antibody (Life Technologies) were used to 142 

stain Ishikawa cells and attachment sites. Rabbit polyclonal (H-300-L, Santa Cruz) was 143 

used in some experiments. Hyaluronan was visualised by incubating samples for 3 hrs 144 

at room temperature with a biotinylated hyaluronan binding protein (Biotin-HABP, 145 

Amsbio), followed by streptavidin-fluorescein isothiocyanate for 1 hr at room 146 

temperature. Nuclear and actin stains were performed using a mixture of DAPI (Sigma) 147 

and Alexa Fluor® 568-coupled Phalloidin (Invitrogen). Coverslips with cell layers were 148 

mounted upside down on a microscope slide in a drop of Mowiol 4-88 mounting 149 

medium (Sigma) containing 3% DABCO. Coverslips with embryo-Ishikawa cells were 150 

mounted a chamber of 3% DABCO in PBS to maintain the 3D structure of the 151 

attachment sites. 152 

Fluorescence microscopy 153 

Fluorescence microscopy images were taken with an inverted Zeiss microscope, Zen 154 

2.0 software and the Apotome 2 module, and analysed with ImageJ. Z-series optical 155 

sections of cells were obtained at the minimum of 0.24µm increments for 40X and 63X 156 

objectives. Z-stacks of embryo and embryo attachment sites were obtained at 1-2µm 157 

increments at 40X for a maximal distance of 60µm.  158 

Statistics 159 

Data generated from embryo attachment assays and cell spreading assays are 160 

represented as mean ± the standard error of the mean or median and interquartile 161 

range. Statistical analysis using Prism software (Graph-Pad, USA) included the 2-way 162 
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ANOVA test followed by Bonferroni’s multiple comparisons post-hoc test or non-163 

parametric Wilcoxon, Mann-Whitney & Friedman tests. 164 

Results 165 

CD44 immunoreactivity in blastocysts and Ishikawa cells  166 

The rabbit polyclonal antibody H300 against CD44 showed heterogeneous binding in 167 

the trophectoderm of chemically hatched mouse blastocysts (Figure 1A-C). As 168 

previously reported (Behzad et al., 1994, Singh et al., 2010), Ishikawa cells express 169 

CD44. The monoclonal antibody 5F12, which did not show any reactivity with mouse 170 

embryos, revealed linear lateral distribution of immunoreactivity as well as more diffuse 171 

punctate staining in Ishikawa cells, with considerable intercellular variation (Figure 1D). 172 

Heterogeneous immunoreactivity was in ruffles at the apical surface (Figure 1E). 173 

Variation of culture conditions, including the presence and absence of serum and/or 174 

matrigel as a substrate, did not cause significant changes (not shown). 175 

CD44 immunoreactivity in attachment sites in vitro 176 

Transfer of hatched E4.5 mouse blastocysts to Ishikawa epithelial cell monolayers is 177 

followed by an initial period (28 hrs) of weak and reversible attachment that initiates 178 

the activation required for embryos to progress, over the next 20 hrs, from stable 179 

attachment to breaching and displacement of the underlying cells (Ruane et al., 2017). 180 

Figure 2A shows 5F12 reactivity in cells surrounding an attachment site with no 181 

trophoblast invasion, whereas in Figure 2B, the trophoblast has breached the 182 

subjacent cell layer and is beginning to laterally invade, with CD44-positive epithelial 183 

cells crowded together in adjacent locations. Figure 2C surveys a subsequent stage in 184 

which trophoblast giant cells with prominent stress fibres are apparent spreading over 185 
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the substrate. Intensity scans of such sites showed no significant change in CD44 186 

immunoreactivity in cells adjacent to the embryo either at this or earlier pre-breaching 187 

stages of attachment (not shown). Note this antibody does not detect staining in cells 188 

in adherent embryos.  189 

Function-blocking antibody to CD44 can delay attachment 190 

To test the hypothesis that CD44 might mediate attachment of blastocysts to epithelial 191 

cell layers, a function-blocking antibody, H300, was introduced into co-cultures. HA 192 

does not bind to culture plastic, so the potency of H300 as an inhibitor of CD44 193 

function in Ishikawa cells was examined using an adhesion assay which monitors the 194 

capacity of cells to spread on dishes coated with OPN (Figure 3A,B). Inclusion of H300 195 

resulted in partial inhibition (~ 55%) of spreading when cells were plated on OPN but 196 

the antibody had no effect when a control substrate containing poly-L-lysine was used. 197 

Alterations to embryo behaviour in response to antibody inhibition of CD44 function 198 

were evaluated using a stability scale in which unattached and weakly attached 199 

embryos can be reliably distinguished from those achieving intermediate or fully stable 200 

attachment (Ruane et al., 2017). Unattached embryos move across the monolayer 201 

when disturbed, while weakly and intermediately attached embryos are identifiable by 202 

high and low levels of oscillation, respectively, about an attachment point. Stably 203 

attached embryos do not oscillate. Combining intermediate and stable attachment 204 

scores produces a measure of irreversible attachment (Ruane et al., 2017).  205 

Introducing antibody to cultures just prior to the addition of E4.5 embryos impacted on 206 

weak attachment in the first 8 hrs, and inhibited the level of stable attachment levels at 207 

32 hrs co-culture (Figure 3C,D). In a second series of experiments, the antibody was 208 

added after 24 hrs co-culture when embryos were at E5.5 and beginning to advance 209 
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from weak to stable attachment. Weakly adherent embryos were mechanically 210 

detached at the time of antibody addition, which we have previously demonstrated 211 

does not impact on their ability to progress to stable attachment (Ruane et al., 2017). 212 

Antibody spiking at this time point reduced total attachment levels between 28 and 32 213 

hrs, though by 36 hrs the treated embryos had caught up with controls. Moreover, a 214 

trend towards reduced stable attachment was observed from 28-36 hrs with significant 215 

inhibition of stable attachment at 36 hrs (Figure 3E,F).  216 

A role for endometrial hyaluronan in early embryo attachment 217 

A fluorescent conjugate of the HA-binding domain of versican applied to fixed Ishikawa 218 

cells revealed prominent fluorescence, demonstrating HA localisation at the apical 219 

surface, where embryos initially dock (Figure 4A). After treatment with the enzyme 220 

Hyal2, which cleaves high molecular mass HA into smaller fragments, cells showed a 221 

negligible level of fluorescence (Figure 4B,C). There was no change in CD44 222 

distribution in the treated cells (Figure 4D,E).  223 

We then went on to investigate whether this apical surface-localised HA might 224 

contribute to the attachment reaction. We carried out co-cultures from E5.5, using cells 225 

and/or embryos pre-treated with Hyal2. Embryos stably attached more rapidly to cells 226 

that had been treated with the enzyme, the difference being apparent between 28 and 227 

32 hrs; by 48 hrs the embryos had attached as stably as in untreated controls (Figure 228 

4F,G). Comparing total attachment levels with those of stable attachment 229 

demonstrated that loss of HA has little effect on weak attachment at this embryonic 230 

stage (Figure 4F,G). Treating embryos with Hyal2 had no effect on attachment kinetics 231 

(Figure 4F,G).  232 

Discussion  233 
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Our model system allows a detailed analysis of the kinetics of embryo attachment, 234 

which progresses from a reversible weak stage, with activation of trophoblast gene 235 

expression, to an irreversible stable stage that rapidly progresses to epithelial 236 

breaching (Kang et al., 2014, Ruane et al., 2017). CD44 immunoreactivity in Ishikawa 237 

cells and blastocysts is consistent with our previously reported analysis of the apical 238 

Ishikawa glycoproteome (Singh and Aplin, 2015) and matches CD44 localisation in 239 

human and murine blastocysts (Campbell et al., 1995; Lu et al., 2002).  Data herein 240 

reveal that the presence of a function-blocking CD44 antibody leads to a delay in the 241 

progression of embryos to a stably attached state. Additionally, we found that 242 

enzymatic degradation of the CD44 ligand HA from the apical surface of Ishikawa cell 243 

layers, but not the blastocyst, hastened the attainment of stable attachment, with 244 

minimal effects on weak attachment. Together these data suggest that CD44 245 

contributes to weak embryo attachment in a HA-independent manner while 246 

endometrial HA acts as a brake on progression to stable attachment. 247 

Reflecting these data, pharmacological inhibition of uterine HA synthesis in sheep 248 

leads to its disappearance from the uterine apical epithelial surface and a 249 

corresponding increase in embryo attachment. Conversely, infusion of HA into the 250 

lumen inhibits implantation (Marei et al., 2017). HA may therefore act analogously to 251 

the functions of mucins MUC1 and MUC16 (Aplin, 2000, Dharmaraj et al., 2014, 252 

Gipson et al., 2008, Hey et al., 1994, Meseguer et al., 2001). Moreover, embryonic 253 

activity causing loss of HA from the epithelial surface, as seen for MUC1 (Meseguer et 254 

al., 2001, Singh et al., 2010), may underlie the progression to stable attachment.  255 

The use of HA as a supplement at the time of embryo transfer has received 256 

considerable attention in ART (Fouladi-Nashta et al., 2017, Singh et al., 2015), and 257 
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there is evidence to suggest that exogenous HA can bind to the luminal apical 258 

epithelial cell membrane (Marei et al., 2017). Supplementation would be justified only if 259 

HA can be demonstrated to have a role in improving embryo viability, acquisition of 260 

blastocyst adhesion competence or supporting development that precedes the 261 

interaction with maternal epithelium at the start of implantation. Embryo development 262 

and viability were found to be improved after culture in HA-supplemented media in 263 

humans (Simon et al., 2003) and in other animal models (Gardner et al., 1999, Romek 264 

et al., 2017, Lane et al., 2003). Exogenous HA may actually delay rather than promote 265 

implantation in humans, and this impact on timing could underlie the beneficial effects 266 

of such transfer medium by allowing acclimatisation of the blastocyst to the uterine 267 

environment before implantation, or indeed synchronising a delayed window of 268 

receptivity with the implantation-ready blastocyst. HA-enriched transfer medium has 269 

also been shown to be beneficial during cleavage-stage embryo transfer (Urman et al., 270 

2008; Nakagawa et al., 2012), implying that exogenous HA impacts upon embryo 271 

development or the acquisition of a receptive endometrium. However, the beneficial 272 

effect of HA-supplementation embryo transfer medium on implantation rate and clinical 273 

pregnancy is controversial (Simon et al., 2003, Fancsovits et al., 2015). 274 

The presence of CD44 at the blastocyst-uterine interface is not essential for 275 

implantation in mice: CD44 null mice are fertile and viable with no morphological defect 276 

(Schmits et al., 1997, Protin et al., 1999). In these studies, CD44 null offspring from 277 

heterozygotic matings followed Mendelian rules, and their fertility status was reported, 278 

though not shown, based on breeding of the F1 generation. Another HA-binding 279 

receptor, RHAMM, is expressed both in blastocysts (Choudhary et al., 2009) and 280 

endometrium (Rein et al., 2003, Ozbilgin et al., 2012), and could potentially 281 

compensate for the absence of  CD44 (Nedvetzki et al., 2004, Naor et al., 2007, Toole, 282 
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2009), but it has not been investigated in CD44-null animals. Further investigations are 283 

necessary to determine the role of RHAMM in embryo attachment at implantation. 284 

The anti-CD44 antibody we used has been shown to block binding of OPN to the N-285 

terminus (Teramoto et al., 2005). Since this is also the major binding site in CD44 for 286 

HA, the antibody is likely to impair HA binding (Banerji et al., 2007, Peach et al., 1993). 287 

In the cell spreading assay, targeting CD44 was not expected to achieve a full 288 

inhibition as the endometrial cells express integrins also known to interact with OPN 289 

(Kang et al., 2014). Furthermore, our HA clearance data suggest endogenous OPN is 290 

the more likely ligand involved in CD44-mediated early attachment between 291 

trophectoderm and endometrial epithelial cells (Kang et al., 2014). This study provides 292 

evidence of a role for the CD44-OPN-HA axis in timely progression from weak 293 

(CD44-OPN) to stable (loss of HA) attachment, which we believe is important for the 294 

development of the invasive trophoblast required for the establishment of pregnancy 295 

(Ruane et al., 2017). If the observations were to translate to human embryos 296 

implanting in vivo, a delay of a few hours towards the end of the receptive phase might 297 

lead to failure to rescue the corpus luteum, and subsequent loss of the pregnancy 298 

(Baird et al., 1991). Conversely, rapid stable attachment caused by reduced HA could 299 

allow the implantation of developmentally incompetent embryos with the potential to 300 

miscarry (Aplin et al., 1996, Quenby et al., 2002, Teklenburg et al., 2010). 301 

In conclusion, our study demonstrates for the first time the role of CD44 at the early 302 

stages of embryo-uterine attachment using an in-vitro implantation model and sets the 303 

scene for further investigations to determine the role of other HA-receptors and CD44 304 

ligands at implantation. 305 
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Figure legends  473 

Figure 1 CD44 in embryos and Ishikawa cells.  A, B. An E4.5 mouse blastocyst 474 

fixed in PFA and stained for CD44 using polyclonal antibody H-300 (green). The 475 
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embryo is represented using a single Z-plane of the Z-stack together with a X-Z plane 476 

image below the blue line from the point indicated by the arrow (A) or in 3D (B). C. 477 

Rabbit serum IgG is a negative control. Blue: cell nuclei (DAPI). 5 embryos were 478 

stained in 2 batches. D, E. Representative fluorescence images of localisation of 479 

CD44 (green) at Ishikawa cell lateral membranes using monoclonal antibody 5H12 in 480 

the mid-plane (D) or apical plane (E). The actin cytoskeleton is red (Alexafluor 594-481 

phalloidin). The X-Z plane (bottom of image) reveals CD44-positive epithelium. N=3. 482 

F. Negative control (anti-KLH monoclonal with rhodamine-phalloidin and DAPI). Scale 483 

bar (B, C, F) = 20μm. 484 

Figure 2 CD44 in embryo-epithelial attachment sites.  Mouse embryos attached 485 

after 48 hrs co-culture with Ishikawa cells were fixed and stained with antibody 5H12 486 

(green), which detects human but not mouse CD44. A. The main image shows 487 

confluent unbreached epithelial cells. An attached embryo is centred at the position of 488 

the asterisk. The X-Z plane (bottom of image) collected on the line of the arrow 489 

reveals trophoblast (arrow) attached to CD44-positive epithelium. B. A later stage in 490 

which trophoblast has displaced epithelial cells. The area lacking green staining at 491 

centre reveals the position of the embryo. A blue arrow again indicates the location of 492 

the X-Z section shown at bottom, with white arrows indicating the embryonic periphery 493 

where trophoblast and displaced epithelium are in apposition. C. Still later, with 494 

prominent actin bundles (arrows in top left image) characteristic of trophoblast giant 495 

cells in the plane of the substrate. The position of the embryo is also revealed by the 496 

absence of CD44 staining in an area left of centre. Scale bars in A, B & C, 50μm. 497 

Figure 3 Characterisation of impact of anti-CD44 antibody on embryo 498 

attachment and stability.  A, B. Ishikawa cell spreading assay in which trypsinised 499 
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cells were plated on the indicated substrates and incubated for 1 hr. Spreading was 500 

scored with the aid of a phase contrast microscope. Control cells spread on culture 501 

plastic, poly-lysine, or osteopontin. The anti-CD44 polyclonal antibody H300 effects 502 

partial inhibition of spreading on osteopontin but does not influence behaviour on the 503 

other substrates. C, D. Embryo-epithelial attachment assay with H-300 antibody 504 

added just prior to co-culture from E4.5. Three conditions, control (no antibody), 505 

anti-CD44 antibody and control IgG, are respectively represented in blue, red and 506 

green. All conditions were analysed for the percentage of embryos attached either 507 

weakly, intermediately or stably, and those that had advanced to attach intermediately 508 

and stably. E, F. Plots show attachment when antibody was added to detached 509 

embryo co-cultures after 24h. Data are presented as mean ± SEM and statistical 510 

analysis was performed using 2-way ANOVA with Bonferroni’s multiple comparison 511 

test (*: P<0.05; **: P<0.01; ****: P<0.001). N=4 (48 embryos per condition). 512 

Figure 4 Effect of hyaluronidase treatment on embryo attachment.  A. The 513 

HA-binding domain of versican (green) was used to reveal HA at the surface of 514 

Ishikawa cell layers. The inset shows staining in the absence of binding protein. B. 515 

After treatment with Hyal2, staining is lost. C. Quantification of HA fluorescence. D. 516 

CD44 staining (green) before and after Hyal2 treatment of Ishikawa cells. Total green 517 

fluorescent pixels above background before and after treatment, showing no 518 

difference. Actin, red; DNA, blue. Scale bars in A, B & D, 50μm. E. Quantification of 519 

CD44 fluorescence. F. Mouse embryo total attachment from E5.5-6.5 under four 520 

conditions of Hyal2 treatment of: embryos (red), Ishikawa cells (green), both (purple) 521 

or neither (blue). G. Mouse embryo stable attachment plotted. Data are presented as 522 

mean ± SEM and statistical analysis was performed using 2-way ANOVA with 523 
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Bonferroni’s multiple comparison test (*: P<0.05; **: P<0.01; ****: P<0.001). N=4 (48 524 

embryos per condition). Scale bar (A, B, D) = 50μm 525 
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