54 research outputs found

    The 22-Year Hale Cycle in cosmic ray flux: evidence for direct heliospheric modulation

    Get PDF
    The ability to predict times of greater galactic cosmic ray (GCR) fluxes is important for reducing the hazards caused by these particles to satellite communications, aviation, or astronauts. The 11-year solar-cycle variation in cosmic rays is highly correlated with the strength of the heliospheric magnetic field. Differences in GCR flux during alternate solar cycles yield a 22-year cycle, known as the Hale Cycle, which is thought to be due to different particle drift patterns when the northern solar pole has predominantly positive (denoted as qA>0 cycle) or negative (qA0 cycles than for qA0 and more sharply peaked for qA0 solar cycles, when the difference in GCR flux is most apparent. This suggests that particle drifts may not be the sole mechanism responsible for the Hale Cycle in GCR flux at Earth. However, we also demonstrate that these polarity-dependent heliospheric differences are evident during the space-age but are much less clear in earlier data: using geomagnetic reconstructions, we show that for the period of 1905 - 1965, alternate polarities do not give as significant a difference during the declining phase of the solar cycle. Thus we suggest that the 22-year cycle in cosmic-ray flux is at least partly the result of direct modulation by the heliospheric magnetic field and that this effect may be primarily limited to the grand solar maximum of the space-age

    Detector Description and Performance for the First Coincidence Observations between LIGO and GEO

    Get PDF
    For 17 days in August and September 2002, the LIGO and GEO interferometer gravitational wave detectors were operated in coincidence to produce their first data for scientific analysis. Although the detectors were still far from their design sensitivity levels, the data can be used to place better upper limits on the flux of gravitational waves incident on the earth than previous direct measurements. This paper describes the instruments and the data in some detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial change

    Analysis of LIGO data for gravitational waves from binary neutron stars

    Get PDF
    We report on a search for gravitational waves from coalescing compact binary systems in the Milky Way and the Magellanic Clouds. The analysis uses data taken by two of the three LIGO interferometers during the first LIGO science run and illustrates a method of setting upper limits on inspiral event rates using interferometer data. The analysis pipeline is described with particular attention to data selection and coincidence between the two interferometers. We establish an observational upper limit of R<\mathcal{R}<1.7 \times 10^{2}peryearperMilkyWayEquivalentGalaxy(MWEG),with90coalescencerateofbinarysystemsinwhicheachcomponenthasamassintherange1−−3 per year per Milky Way Equivalent Galaxy (MWEG), with 90% confidence, on the coalescence rate of binary systems in which each component has a mass in the range 1--3 M_\odot$.Comment: 17 pages, 9 figure

    Calculation of the Flux of Atmospheric Neutrinos

    Full text link
    Atmospheric neutrino-fluxes are calculated over the wide energy range from 30 MeV to 3,000 GeV for the study of neutrino-physics using the data from underground neutrino-detectors. The atmospheric muon-flux at high altitude and at sea level is studied to calibrate the neutrino-fluxes at low energies and high energies respectively. The agreement of our calculation with observations is satisfactory. The uncertainty of atmospheric neutrino-fluxes is also studied.Comment: 51 page

    Genomic and phenotypic characterization of 404 individuals with neurodevelopmental disorders caused by CTNNB1 variants

    Get PDF
    Purpose: Germline loss-of-function variants in CTNNB1 cause neurodevelopmental disorder with spastic diplegia and visual defects (NEDSDV; OMIM 615075) and are the most frequent, recurrent monogenic cause of cerebral palsy (CP). We investigated the range of clinical phenotypes owing to disruptions of CTNNB1 to determine the association between NEDSDV and CP. Methods: Genetic information from 404 individuals with collectively 392 pathogenic CTNNB1 variants were ascertained for the study. From these, detailed phenotypes for 52 previously unpublished individuals were collected and combined with 68 previously published individuals with comparable clinical information. The functional effects of selected CTNNB1 missense variants were assessed using TOPFlash assay. Results: The phenotypes associated with pathogenic CTNNB1 variants were similar. A diagnosis of CP was not significantly associated with any set of traits that defined a specific phenotypic subgroup, indicating that CP is not additional to NEDSDV. Two CTNNB1 missense variants were dominant negative regulators of WNT signaling, highlighting the utility of the TOPFlash assay to functionally assess variants. Conclusion: NEDSDV is a clinically homogeneous disorder irrespective of initial clinical diagnoses, including CP, or entry points for genetic testing.Sayaka Kayumi, Luis A. Perez-Jurado, MarĂ­a Palomares, Sneha Rangu, Sarah E. Sheppard, Wendy K. Chung, Michael C. Kruer, Mira Kharbanda, David J. Amor, George McGillivray, Julie S. Cohen, Sixto GarcĂ­a-MinaĂșr, Clare L. van Eyk, Kelly Harper, Lachlan A. Jolly, Dani L. Webber, Christopher P. Barnett, Fernando Santos-Simarro, Marta Pacio-MĂ­guez, Angela del Pozo, Somayeh Bakhtiari, Matthew Deardorff, Holly A. Dubbs, Kosuke Izumi, Katheryn Grand, Christopher Gray, Paul R. Mark, Elizabeth J. Bhoj, Dong Li, Xilma R. Ortiz-Gonzalez, Beth Keena, Elaine H. Zackai, Ethan M. Goldberg, Guiomar Perez de Nanclares, Arrate Pereda, Isabel Llano-Rivas, Ignacio Arroyo, MarĂ­a Angeles Fernandez-Cuesta, Christel Thauvin-Robinet, Laurence Faivre, Aurore Garde, Benoit Mazel, Ange-Line Bruel, Michael L. Tress, Eva Brilstra, Amena Smith Fine, Kylie E. Crompton, Alexander P.A. Stegmann, Margje Sinnema, Servi C.J. Stevens, Joost Nicolai, Gaetan Lesca, Laurence Lion-Francois, Damien Haye, Nicolas Chatron, Amelie Piton, Mathilde Nizon, Benjamin Cogne, Siddharth Srivastava, Jennifer Bassetti, Candace Muss, Karen W. Gripp, Rebecca A. Procopio, Francisca Millan, Michelle M. Morrow, Melissa Assaf, Andres Moreno-De-Luca, Shelagh Joss, Mark J. Hamilton, Marta Bertoli, Nicola Foulds, Shane McKee, Alastair H. MacLennan, Jozef Gecz, Mark A. Corbet

    Measurement of prompt hadron production ratios in pppp collisions at s=\sqrt{s} = 0.9 and 7 TeV

    Get PDF
    The charged-particle production ratios pˉ/p\bar{p}/p, K−/K+K^-/K^+, π−/π+\pi^-/\pi^+, (p+pˉ)/(π++π−)(p + \bar{p})/(\pi^+ + \pi^-), (K++K−)/(π++π−)(K^+ + K^-)/(\pi^+ + \pi^-) and (p+pˉ)/(K++K−)(p + \bar{p})/(K^+ + K^-) are measured with the LHCb detector using 0.3nb−10.3 {\rm nb^{-1}} of pppp collisions delivered by the LHC at s=0.9\sqrt{s} = 0.9 TeV and 1.8nb−11.8 {\rm nb^{-1}} at s=7\sqrt{s} = 7 TeV. The measurements are performed as a function of transverse momentum pTp_{\rm T} and pseudorapidity η\eta. The production ratios are compared to the predictions of several Monte Carlo generator settings, none of which are able to describe adequately all observables. The ratio pˉ/p\bar{p}/p is also considered as a function of rapidity loss, Δy≡ybeam−y\Delta y \equiv y_{\rm beam} - y, and is used to constrain models of baryon transport.Comment: Incorrect entries in Table 2 corrected. No consequences for rest of pape

    Analysis of shared heritability in common disorders of the brain

    Get PDF
    Paroxysmal Cerebral Disorder
    • 

    corecore