927 research outputs found

    Neuroethology of reward and decision making

    Get PDF
    Ethology, the evolutionary science of behaviour, assumes that natural selection shapes behaviour and its neural substrates in humans and other animals. In this view, the nervous system of any animal comprises a suite of morphological and behavioural adaptations for solving specific information processing problems posed by the physical or social environment. Since the allocation of behaviour often reflects economic optimization of evolutionary fitness subject to physical and cognitive constraints, neurobiological studies of reward, punishment, motivation and decision making will profit from an appreciation of the information processing problems confronted by animals in their natural physical and social environments

    New Finite Rogers-Ramanujan Identities

    Full text link
    We present two general finite extensions for each of the two Rogers-Ramanujan identities. Of these one can be derived directly from Watson's transformation formula by specialization or through Bailey's method, the second similar formula can be proved either by using the first formula and the q-Gosper algorithm, or through the so-called Bailey lattice.Comment: 19 pages. to appear in Ramanujan

    Expansion for the solutions of the Bogomolny equations on the torus

    Full text link
    We show that the solutions of the Bogomolny equations for the Abelian Higgs model on a two-dimensional torus, can be expanded in powers of a quantity epsilon measuring the departure of the area from the critical area. This allows a precise determination of the shape of the solutions for all magnetic fluxes and arbitrary position of the Higgs field zeroes. The expansion is carried out to 51 orders for a couple of representative cases, including the unit flux case. We analyse the behaviour of the expansion in the limit of large areas, in which case the solutions approach those on the plane. Our results suggest convergence all the way up to infinite area.Comment: 26 pages, 8 figures, slightly revised version as published in JHE

    Structure and Magnetization of Two-Dimensional Vortex Arrays in the Presence of Periodic Pinning

    Get PDF
    Ground-state properties of a two-dimensional system of superconducting vortices in the presence of a periodic array of strong pinning centers are studied analytically and numerically. The ground states of the vortex system at different filling ratios are found using a simple geometric argument under the assumption that the penetration depth is much smaller than the spacing of the pin lattice. The results of this calculation are confirmed by numerical studies in which simulated annealing is used to locate the ground states of the vortex system. The zero-temperature equilibrium magnetization as a function of the applied field is obtained by numerically calculating the energy of the ground state for a large number of closely spaced filling ratios. The results show interesting commensurability effects such as plateaus in the B-H diagram at simple fractional filling ratios.Comment: 12 pages, 19 figures, submitted for publicatio

    Modeling DNA Structure, Elasticity and Deformations at the Base-pair Level

    Full text link
    We present a generic model for DNA at the base-pair level. We use a variant of the Gay-Berne potential to represent the stacking energy between neighboring base-pairs. The sugar-phosphate backbones are taken into account by semi-rigid harmonic springs with a non-zero spring length. The competition of these two interactions and the introduction of a simple geometrical constraint leads to a stacked right-handed B-DNA-like conformation. The mapping of the presented model to the Marko-Siggia and the Stack-of-Plates model enables us to optimize the free model parameters so as to reproduce the experimentally known observables such as persistence lengths, mean and mean squared base-pair step parameters. For the optimized model parameters we measured the critical force where the transition from B- to S-DNA occurs to be approximately 140pN140{pN}. We observe an overstretched S-DNA conformation with highly inclined bases that partially preserves the stacking of successive base-pairs.Comment: 15 pages, 25 figures. submitted to PR

    Quintessential Maldacena-Maoz Cosmologies

    Full text link
    Maldacena and Maoz have proposed a new approach to holographic cosmology based on Euclidean manifolds with disconnected boundaries. This approach appears, however, to be in conflict with the known geometric results [the Witten-Yau theorem and its extensions] on spaces with boundaries of non-negative scalar curvature. We show precisely how the Maldacena-Maoz approach evades these theorems. We also exhibit Maldacena-Maoz cosmologies with [cosmologically] more natural matter content, namely quintessence instead of Yang-Mills fields, thereby demonstrating that these cosmologies do not depend on a special choice of matter to split the Euclidean boundary. We conclude that if our Universe is fundamentally anti-de Sitter-like [with the current acceleration being only temporary], then this may force us to confront the holography of spaces with a connected bulk but a disconnected boundary.Comment: Much improved exposition, exponent in Cai-Galloway theorem fixed, axionic interpretation of scalar explained, JHEP version. 33 pages, 3 eps figure

    Polarization phenomena in open charm photoproduction processes

    Get PDF
    We analyze polarization effects in associative photoproduction of pseudoscalar (Dˉ\bar{D}) charmed mesons in exclusive processes γ+NYc+Dˉ\gamma+ N\to Y_c +\bar{D}, Yc=Λc+Y_c=\Lambda_c^+, Σc\Sigma_c. Circularly polarized photons induce nonzero polarization of the YcY_c-hyperon with xx- and zz-components (in the reaction plane) and non vanishing asymmetries Ax{\cal A}_x and Az{\cal A}_z for polarized nucleon target. These polarization observables can be predicted in model-independent way for exclusive Dˉ\bar{D}-production processes in collinear kinematics. The T-even YcY_c-polarization and asymmetries for non-collinear kinematics can be calculated in framework of an effective Lagrangian approach. The depolarization coefficients DabD_{ab}, characterizing the dependence of the YcY_c-polarization on the nucleon polarization are also calculated.Comment: 36 pages 13 figure

    Long-term wind resource assessment for small and medium-scale turbines using operational forecast data and measure-correlate-predict

    Get PDF
    Output from a state-of-the-art, 4 km resolution, operational forecast model (UK4) was investigated as a source of long-term historical reference data for wind resource assessment. The data were used to implement measure-correlate-predict (MCP) approaches at 37 sites throughout the United Kingdom (UK). The monthly and hourly linear correlation between the UK4-predicted and observed wind speeds indicates that UK4 is capable of representing the wind climate better than the nearby meteorological stations considered. Linear MCP algorithms were implemented at the same sites using reference data from UK4 and nearby meteorological stations to predict the long-term (10-year) wind resource. To obtain robust error statistics, MCP algorithms were applied using onsite measurement periods of 1-12 months initiated at 120 different starting months throughout an 11 year data record. Using linear regression MCP over 12 months, the average percentage errors in the long-term predicted mean wind speed and power density were 3.0% and 7.6% respectively, using UK4, and 2.8% and 7.9% respectively, using nearby meteorological stations. The results indicate that UK4 is highly competitive with nearby meteorological observations as an MCP reference data source. UK4 was also shown to systematically improve MCP predictions at coastal sites due to better representation of local diurnal effects

    Grain Surface Models and Data for Astrochemistry

    Get PDF
    AbstractThe cross-disciplinary field of astrochemistry exists to understand the formation, destruction, and survival of molecules in astrophysical environments. Molecules in space are synthesized via a large variety of gas-phase reactions, and reactions on dust-grain surfaces, where the surface acts as a catalyst. A broad consensus has been reached in the astrochemistry community on how to suitably treat gas-phase processes in models, and also on how to present the necessary reaction data in databases; however, no such consensus has yet been reached for grain-surface processes. A team of ∼25 experts covering observational, laboratory and theoretical (astro)chemistry met in summer of 2014 at the Lorentz Center in Leiden with the aim to provide solutions for this problem and to review the current state-of-the-art of grain surface models, both in terms of technical implementation into models as well as the most up-to-date information available from experiments and chemical computations. This review builds on the results of this workshop and gives an outlook for future directions
    corecore