93 research outputs found

    Recent Developments in the MCNP-POLIMI Postprocessing Code

    Get PDF
    The design and analysis of measurements performed with organic scintillators rely on the use of Monte Carlo codes to simulate the interaction of neutrons and photons, originating from fission and other reactions, with the materials present in the system and the radiation detectors. MCNP-PoliMi is a modification of the MCNP-4c code that models the physics of secondary particle emission from fission and other processes realistically. This characteristic allows for the simulation of the higher moments of the distribution of the number of neutrons and photons in a multiplying system. The present report describes the recent additions to the MCNP-PoliMi post-processing code. These include the simulation of detector dead time, multiplicity, and third order statistics

    Correlations in prompt neutrons and gamma-rays from Cf-252 spontaneous fission

    Full text link
    New event-by-event fission models have prompt neutrons and gamma-rays that are correlated in time, energy, and multiplicity, however there is limited measurement data available to validate these models. Measurement of high-order fission neutron and gamma-ray coincidences is difficult and there has previously been little motivation to measure properties of both particle types simultaneously. High-order Cf-252 spontaneous fission neutron and gamma-ray coincidences were measured with a cylindrical array of 22 liquid organic and 8 NaI(Tl) scintillation detectors, 50 cm from a central axis. Waveforms were acquired and saved for post-processing using four time-synchronized CAEN V1720 digitizers. Liquid organic scintillator waveforms were analyzed with off-line pulse shape discrimination techniques to categorize neutron and gamma-ray detections. Detected multiplicity was compared with MCNPX-PoliMi simulation results, where built-in fission models and event-by-event fission models, CGMF and FREYA, have been implemented. Additionally, measured neutron energy by time-of-flight and gamma-ray energy correlated by detected multiplicity were compared to simulated results

    ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries

    Get PDF
    This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of "big data" (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA's activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Prompt K_short production in pp collisions at sqrt(s)=0.9 TeV

    Get PDF
    The production of K_short mesons in pp collisions at a centre-of-mass energy of 0.9 TeV is studied with the LHCb detector at the Large Hadron Collider. The luminosity of the analysed sample is determined using a novel technique, involving measurements of the beam currents, sizes and positions, and is found to be 6.8 +/- 1.0 microbarn^-1. The differential prompt K_short production cross-section is measured as a function of the K_short transverse momentum and rapidity in the region 0 < pT < 1.6 GeV/c and 2.5 < y < 4.0. The data are found to be in reasonable agreement with previous measurements and generator expectations.Comment: 6+18 pages, 6 figures, updated author lis

    Overview of the JET results in support to ITER

    Get PDF

    Preliminary MCNP-POLIMI Simulations for the Evaluation of the ''Floor Effect'': Comparison of APSTNG and Cf Sources

    No full text
    The present simulations performed with the Monte Carlo code MCNP-POLIMI [1] have the scope of evaluating the associated-particle sealed tube neutron generator (APSTNG) for use as an interrogation source in the source-driven noise analysis method for the assay of nuclear materials. In the Nuclear Materials Identification System (NMIS) developed at the Oak Ridge National Laboratory, the time dependent cross-correlation of the timed neutron source and detector responses is one of the signatures acquired. Previous studies and measurements have demonstrated the sensitivity of this and other related signatures to fissile mass [2-3]. In a recent report [4], we outlined the advantages of the APSTNG interrogation source for use with NMIS when compared with the Cf-252 source. In particular, we showed that when the distance between the source and the sample and the sample and the detectors is large, the APSTNG source outperforms the Cf-252 in sensitivity to fissile mass. This is the case when performing measurements of items that are placed inside containers. The purpose of this report is to investigate the advantages of using the APSTNG source in reducing the effect of floor reflections in the signatures acquired. To this end, a large number of MCNP-POLIMI Monte Carlo simulations were performed to obtain source-detector covariance functions
    • 

    corecore