244 research outputs found

    A treatment of the Zeeman effect using Stokes formalism and its implementation in the Atmospheric Radiative Transfer Simulator (ARTS)

    Get PDF
    This paper presents the practical theory that was used to implement the Zeeman effect using Stokes formalism in the Atmospheric Radiative Transfer Simulator (ARTS). ARTS now treats the Zeeman effect in a general manner for several gas species for all polarizations and takes into account variations in both magnetic and atmospheric fields along a full 3D geometry. We present how Zeeman splitting affects polarization in radiative transfer simulations and find that the effect may be large in Earth settings for polarized receivers in limb observing geometry. We find that not taking a spatially varying magnetic field into account can result in absolute errors in the measurement vector of at least 10K in Earth magnetic field settings. The paper also presents qualitative tests for O2 lines against previous models (61.15GHz line) and satellite data from Odin-SMR (487.25GHz line), and the overall consistency between previous models, satellite data, and the new ARTS Zeeman module seems encouraging

    A New Halocarbon Absorption Model Based on HITRAN Cross-Section Data and New Estimates of Halocarbon Instantaneous Clear-Sky Radiative Forcing

    Get PDF
    The article describes a new practical model for the infrared absorption of chlorofluorocarbons and other gases with dense spectra, based on high-resolution transmission molecular absorption database (HITRAN) absorption cross-sections. The model is very simple, consisting of frequency-dependent polynomial coefficients describing the pressure and temperature dependence of absorption. Currently it is implemented for the halocarbon species required by the Radiative Forcing Model Intercomparison Project. In cases where cross-section data is available at a range of different temperatures and pressures, this approach offers practical advantages compared to previously available options, and is traceable, since the polynomial coefficients follow directly from the laboratory spectra. The new model is freely available and has several important applications, notably in remote sensing and in developing advanced radiation schemes for global circulation models that include halocarbon absorption. For demonstration, the model is applied to the problem of computing instantaneous clear-sky halocarbon radiative efficiencies and present day radiative forcing. Results are in reasonable agreement with earlier assessments that were carried out with the less explicit Pinnock method, and thus broadly validate that method. Plain Language Summary Chlorofluorocarbons and other related gases have dense and complicated absorption spectra that can be measured in the laboratory. We bring such measurements to a form that can be used for simulations of the transfer of radiation through the atmosphere. Then we use the new model to calculate new estimates of the climate impact of these man-made gases. The results broadly validate earlier calculations that were done with a less explicit method

    Electron transport in gated InGaAs and InAsP quantum well wires in selectively-grown InP ridge structures

    Full text link
    The purpose of this work is to fabricate ribbon-like InGaAs and InAsP wires embedded in InP ridge structures and investigate their transport properties. The InP ridge structures that contain the wires are selectively grown by chemical beam epitaxy (CBE) on pre-patterned InP substrates. To optimize the growth and micro-fabrication processes for electronic transport, we explore the Ohmic contact resistance, the electron density, and the mobility as a function of the wire width using standard transport and Shubnikov-de Haas measurements. At low temperatures the ridge structures reveal reproducible mesoscopic conductance fluctuations. We also fabricate ridge structures with submicron gate electrodes that exhibit non-leaky gating and good pinch-off characteristics acceptable for device operation. Using such wrap gate electrodes, we demonstrate that the wires can be split to form quantum dots evidenced by Coulomb blockade oscillations in transport measurements.Comment: 5 pages, 4 figures, additional references and improved Fig. 4c, MSS-14 conference, submitted to Physica

    ARTS, the Atmospheric Radiative Transfer Simulator - Version 2.2, the planetary toolbox edition

    Get PDF
    This article describes the latest stable release (version 2.2) of the Atmospheric Radiative Transfer Simulator (ARTS), a public domain software for radiative transfer simulations in the thermal spectral range (microwave to infrared). The main feature of this release is a planetary toolbox that allows simulations for the planets Venus, Mars, and Jupiter, in addition to Earth. This required considerable model adaptations, most notably in the area of gaseous absorption calculations. Other new features are also described, notably radio link budgets (including the effect of Faraday rotation that changes the polarization state) and the treatment of Zeeman splitting for oxygen spectral lines. The latter is relevant, for example, for the various operational microwave satellite temperature sensors of the Advanced Microwave Sounding Unit (AMSU) family

    Transient domain walls and lepton asymmetry in the Left-Right symmetric model

    Full text link
    It is shown that the dynamics of domain walls in Left-Right symmetric models, separating respective regions of unbroken SU(2)_L and SU(2)_R in the early universe, can give rise to baryogenesis via leptogenesis. Neutrinos have a spatially varying complex mass matrix due to CP-violating scalar condensates in the domain wall. The motion of the wall through the plasma generates a flux of lepton number across the wall which is converted to a lepton asymmetry by helicity-flipping scatterings. Subsequent processing of the lepton excess by sphalerons results in the observed baryon asymmetry, for a range of parameters in Left-Right symmetric models.Comment: v2 version accepted for publication in Phys. Rev. D. Discussion in Introduction and Conclusion sharpened. Equation (12) corrected. 16 pages, 3 figure files, RevTeX4 styl

    The Life and Death of Barn Beetles: Faunas from Manure and Stored Hay inside Farm Buildings in Northern Iceland

    Get PDF
    This research was funded by the Commonwealth Scholarship Commission and received support from the Research Budget of the Department of Archaeology at the University of Aberdeen. This project was undertaken as part of doctoral studies supervised by Dr Karen Milek, to whom V.F. is especially grateful for her support and advice. Thomas Birch, Sigrún Inga Garðarsdóttir, and Paul Ledger provided invaluable assistance during fieldwork. V.F. would like to dedicate this paper to Tom and Sía, who met during this fieldwork and are getting married this year. Many people from Fornleifastofnun Íslands – Garðar Guðmundsson, Ólöf Þorsteinsdóttir, Þóra Pétursdóttir, Adolf Friðriksson and Uggi Ævarsson – as well as Unnstein Ingason, Ágústa Edwald, and Mark Young, helped with fieldwork logistics. Special thanks are due to all the Icelandic farmers and their families who kindly allowed us to collect insects on their farms and provided help when needed: Hermann Aðalsteinsson, Hermína Fjóla Ingólfsdóttir, Guðmundur Skúlason, Sigrún Á. Franzdóttir, Dúna Magnúsdóttir, Sverrir Steinbergsson, Valgeir Þorvaldsson, Reynir Sveinsson, Jónas Þór Ingólfsson, and Ívar Ólafsson. Eva Panagiotakopulu, Jan Klimaszewski, Ales Smetana, Georges Pelletier, Gabor Pozsgai, and Jenni Stockham helped with some of the beetle identifications. A.J.D. acknowledges the support of National Science Foundation through ARC 1202692. Consultation of the BugsCEP database (Buckland & Buckland, 2006) aided the redaction of this paper. The authors would like to thank David Smith and two anonymous reviewers for insightful comments that helped improve the quality of this paper.Peer reviewedPostprin

    Interoperable and scalable data analysis with microservices: applications in metabolomics.

    Get PDF
    Developing a robust and performant data analysis workflow that integrates all necessary components whilst still being able to scale over multiple compute nodes is a challenging task. We introduce a generic method based on the microservice architecture, where software tools are encapsulated as Docker containers that can be connected into scientific workflows and executed using the Kubernetes container orchestrator. We developed a Virtual Research Environment (VRE) which facilitates rapid integration of new tools and developing scalable and interoperable workflows for performing metabolomics data analysis. The environment can be launched on-demand on cloud resources and desktop computers. IT-expertise requirements on the user side are kept to a minimum, and workflows can be re-used effortlessly by any novice user. We validate our method in the field of metabolomics on two mass spectrometry, one nuclear magnetic resonance spectroscopy and one fluxomics study. We showed that the method scales dynamically with increasing availability of computational resources. We demonstrated that the method facilitates interoperability using integration of the major software suites resulting in a turn-key workflow encompassing all steps for mass-spectrometry-based metabolomics including preprocessing, statistics and identification. Microservices is a generic methodology that can serve any scientific discipline and opens up for new types of large-scale integrative science. The PhenoMeNal consortium maintains a web portal (https://portal.phenomenal-h2020.eu) providing a GUI for launching the Virtual Research Environment. The GitHub repository https://github.com/phnmnl/ hosts the source code of all projects. Supplementary data are available at Bioinformatics online

    Dairy foods, calcium, and risk of breast cancer overall and for subtypes defined by estrogen receptor status: a pooled analysis of 21 cohort studies

    Get PDF
    Background: Epidemiologic studies examining the relations between dairy product and calcium intakes and breast cancer have been inconclusive, especially for tumor subtypes. Objective: To evaluate the associations between intakes of specific dairy products and calcium and risk of breast cancer overall and for subtypes defined by estrogen receptor (ER) status. Method: We pooled the individual-level data of over 1 million women who were followed for a maximum of 8-20 years across studies. Associations were evaluated for dairy product and calcium intakes and risk of incident invasive breast cancer overall (n = 37,861 cases) and by subtypes defined by ER status. Study-specific multivariable hazard ratios (HRs) were estimated and then combined using random-effects models. Results: Overall, no clear association was observed between the consumption of specific dairy foods, dietary (from foods only) calcium, and total (from foods and supplements) calcium, and risk of overall breast cancer. Although each dairy product showed a null or very weak inverse association with risk of overall breast cancer (P, test for trend >0.05 for all), differences by ER status were suggested for yogurt and cottage/ricotta cheese with associations observed for ER-negative tumors only (pooled HR = 0.90, 95% CI: 0.83, 0.98 comparing >= 60 g/d with = 25 g/d with Conclusion: Our study shows that adult dairy or calcium consumption is unlikely to associate with a higher risk of breast cancer and that higher yogurt and cottage/ricotta cheese intakes were inversely associated with the risk of ER-negative breast cancer, a less hormonally dependent subtype with poor prognosis. Future studies on fermented dairy products, earlier life exposures, ER-negative breast cancer, and different racial/ethnic populations may further elucidate the relation
    corecore