959 research outputs found

    Molecular characterization of mesophilic and thermophilic sulfate reducing microbial communities in expanded granular sludge bed (EGSB) reactors

    Get PDF
    The microbial communities established in mesophilic and thermophilic expanded granular sludge bed reactors operated with sulfate as the electron acceptor were analyzed using 16S rRNA targeted molecular methods, including denaturing gradient gel electrophoresis, cloning, and phylogenetic analysis. Bacterial and archaeal communities were examined over 450 days of operation treating ethanol (thermophilic reactor) or ethanol and later a simulated semiconductor manufacturing wastewater containing citrate, isopropanol, and polyethylene glycol 300 (mesophilic reactor), with and without the addition of copper(II). Analysis, of PCR-amplified 16S rRNA gene fragments using denaturing gradient gel electrophoresis revealed a defined shift in microbial diversity in both reactors following a change in substrate composition (mesophilic reactor) and in temperature of operation from 30 degrees C to 55 degrees C (thermophilic reactor). The addition of copper(II) to the influent of both reactors did not noticeably affect the composition of the bacterial or archaeal communities, which is in agreement with the very low soluble copper concentrations (3-310 microg l(-1)) present in the reactor contents as a consequence of extensive precipitation of copper with biogenic sulfides. Furthermore, clone library analysis confirmed the phylogenetic diversity of sulfate-reducing consortia in mesophilic and thermophilic sulfidogenic reactors operated with simple substrate

    The Water–Amorphous Calcium Carbonate Interface and Its Interactions with Amino Acids

    Get PDF
    Amorphous calcium carbonate is often the first phase to precipitate during the mineralisation of calcium carbonate, before the formation of one of the crystalline polymorphs. In vivo, this phase is believed to be essential for the manufacture of minerals displaying non-equilibrium morphologies. The precipitation of this, usually transient, phase and its subsequent transformation into one of the crystalline polymorphs can be controlled by organic molecules. Here, we present a series of Molecular Dynamics simulations that explore the amorphous calcium carbonate – water interface, the attachment of amino acids onto both hydrous and anhydrous amorphous calcium carbonate and their effect on the surface. The results show that surface ions have a different coordination number distribution from bulk ions and can diffuse up to two orders of magnitude faster than their bulk counterparts, suggesting that crystallisation is much more likely to occur in this region. All the amino acids investigated bind to the amorphous calcium carbonate surfaces. However, acidic amino acids have a clear preference for the surface of amorphous CaCO3.H2O. The favoured mode of interaction of the amino acids is through amine and/or guanidine moieties. The important ramifications of the results for our understanding of protein-mineral interactions are discussed

    Using simulation to understand the structure and properties of hydrated amorphous calcium carbonate

    Get PDF
    We report results from studies using four different protocols to prepare hydrated amorphous calcium carbonate, ranging from random initial structures to melting hydrated mineral structures. All protocols give good agreement with experimental X-ray structure factors. However, the thermodynamic properties, ion coordination environments, and distribution of water for the structures produced by the protocols show statistically significant variation depending on the protocols used. We discuss the diffusivity of water through the various structures and its relation to experiments. We show that one protocol (based on melting ikaite) gives a structure where the water is mobile, due to the presence of porosity in the amorphous structure. We conclude that our models of hydrated amorphous calcium carbonate do give a range of behaviour that resembles that observed experimentally, although the variation is less marked in the simulations than in experiments

    Influence of personality, age, sex, and oestrus state on chimpanzee problem-solving success

    Get PDF
    Despite the importance of individual problem solvers for group- and individual-level fitness, the correlates of individual problem-solving success are still an open topic of investigation. In addition to demographic factors, such as age or sex, certain personality dimensions have also been revealed as reliable correlates of problem-solving by animals. Such correlates, however, have been little-studied in chimpanzees. To empirically test the influence of age, sex, estrous state, and different personality factors on chimpanzee problem-solving, we individually tested 36 captive chimpanzees with two novel foraging puzzles. We included both female (N = 24) and male (N = 12) adult chimpanzees (aged 14–47 years) in our sample. We also controlled for the females’ estrous state—a potential influence on cognitive reasoning—by testing cycling females both when their sexual swelling was maximally tumescent (associated with the luteinizing hormone surge of a female’s estrous cycle) and again when it was detumescent. Although we found no correlation between the chimpanzees’ success with either puzzle and their age or sex, the chimpanzees’ personality ratings did correlate with responses to the novel foraging puzzles. Specifically, male chimpanzees that were rated highly on the factors Methodical, Openness (to experience), and Dominance spent longer interacting with the puzzles. There was also a positive relationship between the latency of females to begin interacting with the two tasks and their rating on the factor Reactivity/Undependability. No other significant correlations were found, but we report tentative evidence for increased problem-solving success by the females when they had detumescent estrous swellings

    The role of extracellular DNA in microbial attachment to oxidized silicon surfaces in the presence of Ca2+ and Na+

    Get PDF
    Attachment assays of a Pseudomonas isolate to fused silica slides showed that treatment with DNaseI significantly inhibited cellular adsorption, which was restored upon DNA treatment. These assays confirmed the important role of extracellular DNA (eDNA) adsorption to a surface. To investigate the eDNA adsorption mechanism, single-molecule force spectroscopy (SMFS) was used to measure the adsorption of eDNA to silicon surfaces in the presence of different concentrations of sodium and calcium ions. SMFS reveals that the work of adhesion required to remove calcium-bound eDNA from the silicon oxide surface is substantially greater than that for sodium. Molecular dynamics simulations were also performed, and here, it was shown that the energy gain in eDNA adsorption to a silicon oxide surface in the presence of calcium ions is small and much less than that in the presence of sodium. The simulations show that the length scales involved in eDNA adsorption are less in the presence of sodium ions than those in the presence of calcium. In the presence of calcium, eDNA is pushed above the surface cations, whereas in the presence of sodium ions, short-range interactions with the surface dominate. Moreover, SMFS data show that increasing [Ca2+] from 1 to 10 mM increases the adsorption of the cations to the silicon oxide surface and consequently enhances the Stern layer, which in turn increases the length scale associated with eDNA adsorption

    Systematic solar pvt testing in steady-state and dynamic outdoor conditions

    Get PDF
    In order to predict accurately the performance of solar-thermal or hybrid PVT systems, it is necessary that the steady-state and dynamic performance of the collectors is understood. This work focuses on the testing and detailed characterization of nonconcentrating PVT collectors based on the testing procedure specified in the European standard EN 12975-2. Three different types of PVT collectors were tested in Cyprus under outdoor conditions similar to those specified in the standard. Amongst other results, we show that that poor thermal contact between the laminate and the copper absorber can lead to a significant deterioration in thermal performance and that a glass cover improves the thermal performance by reducing losses as expected, but causes electrical losses that vary with the glass transmittance and the incident angle. It is found that the reduction in electrical efficiency at large solar incidence angles is more significant than that due to elevated temperatures representative of water heating applications. Dynamic tests are performed by imposing a step change in incident irradiance in order to quantify the collector time constant and effective heat capacity. A time constant of 8 min is found for a commercial PVT module, which compares to <2 min for a flat plate solar collector. The PVT collector time constant is found to be very sensitive to the thermal contact between the PV layer and the absorber, which may vary according to the quality of construction, and also to the operating flow rate.Papers presented at the 13th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Portoroz, Slovenia on 17-19 July 2017 .International centre for heat and mass transfer.American society of thermal and fluids engineers

    A lattice model for the kinetics of rupture of fluid bilayer membranes

    Full text link
    We have constructed a model for the kinetics of rupture of membranes under tension, applying physical principles relevant to lipid bilayers held together by hydrophobic interactions. The membrane is characterized by the bulk compressibility (for expansion), the thickness of the hydrophobic part of the bilayer, the hydrophobicity and a parameter characterizing the tail rigidity of the lipids. The model is a lattice model which incorporates strain relaxation, and considers the nucleation of pores at constant area, constant temperature, and constant particle number. The particle number is conserved by allowing multiple occupancy of the sites. An equilibrium ``phase diagram'' is constructed as a function of temperature and strain with the total pore surface and distribution as the order parameters. A first order rupture line is found with increasing tension, and a continuous increase in proto-pore concentration with rising temperature till instability. The model explains current results on saturated and unsaturated PC lipid bilayers and thicker artificial bilayers made of diblock copolymers. Pore size distributions are presented for various values of area expansion and temperature, and the fractal dimension of the pore edge is evaluated.Comment: 15 pages, 8 figure

    Influence of treating facility, provider volume, and patient-sharing on survival of patients with multiple myeloma

    Get PDF
    Background: Population-based studies suggest that patients with multiple myeloma (MM) have better outcomes when treated at high-volume facilities, but the relative contribution of provider expertise and hospital resources to improved outcomes is unknown. This study explored how treating facility, individual provider volume, and patient-sharing between MM specialists and community providers influenced outcomes for patients with MM. Patients and Methods: A state cancer registry linked to public and private insurance claims was used to identify a cohort of patients diagnosed with MM in 2006 through 2012. Three multivariable Cox models were used to examine how the following factors impacted overall survival: (1) evaluation at an NCI-designated Comprehensive Cancer Center (NCICCC), (2) the primary oncologist's volume of patients with MM, and (3) patient-sharing between MM specialists and community oncologists. Results: A total of 1,029 patients diagnosed with MM in 2006 through 2012 were identified. Patients who were not evaluated at an NCICCC had an increased risk of mortality compared with those evaluated at an NCICCC (hazard ratio [HR], 1.50; 95% CI, 1.21-1.86; P,.001). Compared with patients treated by NCICCC MM specialists, those treated by both low-volume community providers (HR, 1.47; 95% CI, 1.14-1.90; P,.01) and high-volume community providers (HR, 1.29; 95% CI, 1.04-1.61; P,.05) had a higher risk of mortality. No difference in mortality was seen between patients treated by NCICCC MM specialists and those treated by the highest-volume community oncologists in the ninth and tenth deciles (HR, 1.08; 95% CI, 0.84-1.37; P 5.5591). Patients treated by community oncologists had a higher risk of mortality regardless of patient-sharing compared with patients treated by MM specialists (eg, community oncologist with a history of sharing vs NCICCC MM specialist: HR, 1.49; 95% CI, 1.10-2.02; P,.05). Conclusions: Findings of this study add to the accumulating evidence showing that patients with MM benefit from care at high-volume facilities, and suggest that similar outcomes can be achieved by the highest-volume providers in the community
    • …
    corecore