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ABSTRACT: Amorphous calcium carbonate is often the first phase to precipitate from
solution during the mineralization of calcium carbonate, before the formation of one of the
crystalline polymorphs. In vivo, this phase is believed to be essential for the manufacture of
minerals displaying nonequilibrium morphologies. The precipitation of this, usually
transient, phase and its subsequent transformation into one of the crystalline polymorphs
can be controlled by organic molecules. Here, we present a series of molecular dynamics
simulations that explore the amorphous calcium carbonate−water interface, the attachment
of amino acids onto both hydrous and anhydrous amorphous calcium carbonate, and their
effect on the surface. The results show that surface ions have a different coordination
number distribution from bulk ions and can diffuse up to two orders of magnitude faster
than their bulk counterparts, suggesting that crystallization is much more likely to occur in
this region. All the amino acids investigated bind to the amorphous calcium carbonate
surfaces. However, acidic amino acids have a clear preference for the surface of amorphous
CaCO3·H2O. The favored mode of interaction of the amino acids is through amine and/or guanidine moieties. The important
ramifications of the results for our understanding of protein−mineral interactions are discussed.

■ INTRODUCTION

Living organisms have the ability to precipitate mineralsthe
growth of which is controlled from the bottom-upwith
morphologies and properties finely tuned for their task. While
this capability is affected by several factors, two seem to be
particularly important: the initial precipitation of an amorphous
precursor1 and the interactions between the mineral phase and
organic molecules.2 Nucleation of precursor amorphous phases
occurs throughout the animal kingdom.3,4 Thus, understanding
the binding and the effect of organic molecules on the structure
of this intermediate phase and on its potential energy landscape is
important for understanding biomineralization. The results
could then be used to design new manufacturing processes for
advanced materials.5

Interactions between amorphous calcium carbonate (ACC)
and organic molecules seem to be essential in the formation of
the required crystalline polymorph.1,4,6 While studying molluscs,
both Falini et al.7 and Belcher et al.8 suggested that polymorph
selection can be controlled by macromolecules associated with
both the prismatic and nacre layers of mollusc shells. Later, when
an amorphous precipitate was first observed in vivo,9,10 it was
suggested that macromolecules influenced polymorph selection
by modifying the structure of the amorphous precursor. Further
support for this idea was obtained when the amorphous
precipitate in both aragonite-forming molluscs11 and calcite-
forming sea urchins12 showed structural patterns that were
different and matched the relevant final polymorph.

The stabilization of an amorphous phase is extremely
important in some living organisms. First of all, it is an easily
accessible feedstock for the supply of ions to a growing crystal,
and second, it can be essential for regulating both the location
and the time frame of crystallization,4 which needs to be tightly
controlled to ensure the proper functioning of the final material.
Experimental investigations have shown that, in vivo, the
amorphous precursor is in contact with proteins containing
substantial numbers of glutamic acid and glycine residues.13 In
vitro experiments showed that polyaspartic acid was able to delay
crystallization in solution and stabilize liquid-like amorphous
aggregates (PILP − polymer-induced liquid precursors) in both
calcium carbonate and calcium phosphate solutions.5,14−16

Not only are acidic domains of proteins and peptides able to
interact with the precipitating mineral phase, but also basic
residues can have an impact on nucleation and growth. In a
recent study, Cantaert et al. showed that the formation of PILP
observed with polyaspartic acid in solution5 could be replicated
using a basic amino acid: poly(allylamine hydrochloride),17

indicating that both positively and negatively charged molecules
can have an impact on nucleation and growth. In another study,
Tavafoghi and Cerruti analyzed the effect of glutamic acid and
arginine on the precipitation of hydroxyapatite (HAP) from
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solution.18 Arginine was better at delaying the precipitation of
HAP,18 and additionally, its incorporation within the final crystal
was more pronounced than glutamic acid.18 The results obtained
by Tavafoghi and Cerruti also showed that nucleation and
growth of mineral phases in solution can be modified by amino
acids.18 Amino acids are cheaper and easier to synthesize than
complex proteins and may prove to be more viable for industrial
applications.
Experimentally, it is not yet possible to follow the molecular

mechanism leading to specific observations, such as those
discussed above (even though recent advances in technology is
allowing the observation of yet smaller length scales). These
mechanisms can, however, be investigated using molecular
simulations. Freeman et al. used molecular dynamics (MD)
simulations to understand how ovocleidin-17 (a protein found in
avian eggshell) binds to ACC (and calcite) and its effect on the
free energy landscape of calcium carbonate nanoparticles.19−22

The simulation showed that the binding of ovocleidin-17 to an
amorphous surface occurred mainly through arginine residues in
the random coil of the protein.22 Raiteri et al. used a modified
version of the CHARMM force field (for the organic species) to
analyze the interaction of calcium and carbonate ions (modeled
using a potential specifically derived for the simulation of calcium
carbonate23), their ion pairs, amorphous nanoparticles, and the
(10.4) calcite surfaces with citrate, aspartate, and acetate.24 The
simulations showed that the free energy of binding of acetate and
aspartate to an amorphous surface was very similar, suggesting an
interaction mainly via the carboxylate group. In another study,
Saharay and Kirkpatrick used metadynamics to obtain the free
energy curve of the interaction of functional group assays
representing different amino acids.25 The functional groups were
modeled using guanidine, acetate, acetic acid, and ethanol. As the
strongest binding energies were found for the guanidine and
acetate groups, it was suggested that these acted as nucleation
sites for the crystallization of calcium carbonate minerals.25

The binding of organic molecules to ion pairs is considerably
different from surface binding, as shown by Raiteri et al.24 The
surface can formwater layers, which could impede the binding, or
modify it.26 Raiteri et al.24 only considered acidic additives with
different numbers of carboxylate groups and did not consider
positively charged functional groups in their study; thus, it is
desirable to analyze the role of charge-charge interactions in
additive-ACC binding in a self-consistent study.
Here, we investigate the binding of glutamic acid, aspartic acid,

glycine, and arginine to both hydrous and anhydrous ACC
surfaces using classical MD simulations. The protonation state of
the molecules was selected to represent the most likely states in a
solution at pH 7.4: two of the amino acids are negatively charged
(glutamic acid and aspartic acid), one is positively charged
(arginine) and the fourth is net neutral (glycine). MD was
chosen to obtain an atomistic view of surface adsorption and
associated mechanisms at the atomic scale. The results show that
all amino acids bind to the hydrous and anhydrous ACC surfaces.
The favored mode of interaction observed was hydrogen
bonding between either the guanidine or amine groups.
Additionally, we investigated the water−ACC interface, showing
that this is relatively wide with a structure that evolves during the
timescale of the simulations, and that the ions in that region
diffuse up to two orders of magnitude faster than the bulk ions.
The implications of the results for biomineralization are
discussed.

■ METHODS
System Preparation. The ACC slabs were prepared using

previously described methods,27 which lead to a structure with atomic
pair distribution functions and ionic coordination numbers that
compare well with experimental data.28 Briefly, the ions were randomly
packed in a cubic cell using the program PACKMOL (the minimum
distance betweenmolecules was set to 2.2 Å).29 Two different bulk ACC
configurations were prepared: one contained 294 formula units of
CaCO3 (ACC1) and the second 294 formula units of CaCO3·H2O
(ACC2). The configurations were thenmelted, as bulk materials, for 1 ns
at 3000 K using a time step of 1 fs in an NVT ensemble using
DL_POLY_classic version 1.9.30 ANose−́Hoover thermostat with a 0.1
ps relaxation time was used to control the temperature of the simulation.
Using the final configuration and the same simulation input parameters,
the system was subsequently cooled to 300 K in steps of 300 K. The
ensemble was then changed to NPT using a Nose−́Hoover barostat to
control the pressure of the simulation (1.0 ps relaxation time), set at 1
atm. MD was performed until the configurational energy, volume, and
temperature converged. At the end of this equilibration, ACC1 and
ACC2 simulation cells were cubic boxes with lengths of 26.03 Å and
27.84 Å, respectively. The statistical data presented were extracted from
5 ns of additional simulation time following equilibration.

To prepare the solution−ACC configurations, PACKMOL was used
again.29 The minimum distance between the different molecules in the
system was set to 2.2 Å as before. The distance between the amino acids
and the ACC surface was set to 5.0 Å. For charged amino acids, a
counterion was inserted in the simulation box, either Cl− (for arginine)
or Na+ (for glutamic acid and aspartic acid) to ensure that the sum of
atomic charges in the simulation was zero. Both ACC1 and ACC2
surfaces were solvated using 2050 water molecules, creating ACC slabs
separated by water. The total dimension (ACC slab + water) of the
ACC1 slab systemwas 26.03 Å× 26.03 Å× 112.84 Å, while for ACC2 the
final dimensions were 27.84 Å × 27.84 Å × 104.42 Å.

Simulation Details. For all the following work, we used the force
field developed by Raiteri and Gale (2010)23 to model the ACC. As
suggested in the specification of the carbonate force field, water
molecules were treated using the SPC/Fw model.31 The amino acid
intramolecular interactions were modeled using the standard AMBER
force field set (ff12SB),32,33 which has been used in a large number of
previous analyses of the interaction between biomoleules and the
calcium carbonate system, allowing for a consistent comparison of
results.22,34,35 Intermolecular interactions between the organic and
mineral phase were fitted using the Schröder method described by
Freeman et al.36 The intermolecular interactions of the organic
molecules with water were obtained by using the standard Lorentz−
Berthelot rules. A verification of the intermolecular parameters obtained
was performed by investigating the free energy of binding between Ca2+

ions and aspartic acid for which experimental values have been reported:
−6.7 kJ mol−1.37 After obtaining the free energy curve, the entropy
dependence was corrected following the method detailed by Raiteri et al.
to allow comparison with their results.24 The curve obtained is
presented in Figure S1. The change in the free energy found was−4.5 kJ
mol−1. This value is less favorable than the experimental binding energy
but is closer than previous values obtained via simulation (−12.2 kJ
mol−1 and −16.7 kJ mol−1).24,38

Four different configurations of each amino acid, chosen randomly,
were simulated close to both a hydrous and anhydrous ACC slab.
Initially, the amino acids were tethered using a harmonic potential (k =
2.5 kJ mol−1 Å−2) at a distance of approximately 5 Å from the surface. All
of the simulations were initially relaxed in a NVT ensemble
implemented using a Nose−́Hoover thermostat (relaxation time of
0.1 ps). The time step was set at 1 fs, and the simulation was performed
for 10 ns. During this equilibration, the configurational energy
continuously decreased, which was probably due to a slow remodelling
of the ionic network. The ensemble was therefore set to NPT using a
Nose−́Hoover thermostat and barostat (relaxation time of 0.1 and 1 ps,
respectively) in order to reach a steady state with respect to the
configurational energy. Most simulations were continued for approx-
imately 30 ns, during which the variation of the configurational energy
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decreased; however, no complete convergence in the energy was found
during our simulations. The configurations characterized by the lowest
configurational energy were then simulated without the additional
tether for an additional 15 ns. The results presented are from the last 5 ns
of these simulations.
For all the above simulations, the electrostatic interactions were

treated using the Ewald summation method and the cutoff for the
intermolecular interactions was set to 9 Å. Additionally, in all the
simulations two Ca2+ ions in the center of the slabs were fixed to their
positions to avoid any drift of the system both in the MD and the
umbrella sampling simulations presented below.
Free Energy of Binding. Umbrella sampling was used to calculate

the Helmholtz free energy of binding by using PLUMED 1.3, a plug-in
that can be used in combination with differentMD packages.39 For these
calculations, ACC slabs equilibrated as described above but without
amino acids were used to ensure that the restructuring in the presence of
an amino acid during the long time scale simulation did not have an
impact on the results. The order parameter of the simulations was the
position of the carbon attached to the amine group of the amino acid,
which was restrained at different values of the vector normal to the ACC
plane. Initially, the absolute position was varied by 1 Å in each window
until a distance of 15 Å from the surface was reached. For each window,
an initial run of 200 ps was performed to optimize the molecule’s
position. Subsequently, each window was simulated for at least 3 ns. If
the free energy changes were observed to have sizable error bars
(calculated using the Monte Carlo bootstrap error analysis), the time
was extended by either 1 or 2 ns, until convergence was reached (the
error was below room temperature energy). If the free energy curve
obtained did not converge with time or the error was still large,
additional windows were added in the regions where barriers were found
(the distributions of the distances sampled for all the umbrella sampling
windows are presented in Figure S2). The free energies for the reactions
were then obtained using the weighted histogram analysis method
(WHAM), a code developed by Grossfield.40 For data presentation, the
free energy curves were displaced so that the minima were all at the same
distance from the surface. This facilitates comparison, as the ACC
surface is rough (see Figure S3) and the amino acids interacted with
different regions on the surface.

Analysis of Average Time of Water Molecules within Ionic
Coordination Shells. The average times for water molecules
occupying the first coordination shell of carbonate and calcium ions
were calculated by counting the number of consecutive time steps that a
water molecule stayed within the first coordination shell (determined as
the first minimum in the RDF) of the element of interest. If a water
molecule left its coordination shell for more than 2 ps then the count
would be reset. To avoid spurious effects arising from water molecules
transiting close to the ions without entering within their coordination
shell, in the averages presented water molecules that resided within the
coordination shell for less than 3 ps were not counted. These effects can
arise because in the first minimum of the RDF the value is not zero, so
molecules could enter within the threshold distance without actually
entering within the coordination sphere of the ion of interest.

It is important to emphasize that the measured value will be different
from the often quoted residence times. For the latter, the probability
distribution of a water molecule remaining for at least a time t + Δt is
calculated and then fitted with an exponential function, from which the
residence time is obtained. To be able to do this accurately, however, an
average is usually taken over ions/atoms in positions that are
symmetrically equivalent.41 In the case of ACC this is not possible as
the surface is rough and evolves dynamically; thus, the distributions
obtained were too noisy to be fitted accurately.

To ensure that our force field could reproduce residence times in the
literature, we performed a short simulation including one calcium ion in
3000 water molecules for 5 ns. The residence time calculated was 0.17 ns
which is comparable to, but slightly smaller than, the value quoted by De
La Pierre et al.,41 ∼0.2 ns. This difference is probably due to the short
simulation time used.

For a surface, the residence time does not give a measure of the time it
takes for a water molecule to transition from a bound state to bulk water.
Instead, it measures the time that a water molecule resides in the first
coordination shell of the ion of interest. A water molecule could jump
from one ionic site to the other, without passing through the bulk
solution when leaving the previous coordination shell. Unlike the Pavese
et al.42 model, previously used extensively for the simulation of calcium
carbonate surfaces, the force field model of Raiteri and Gale43 shows
some ion dissolution.44 Thus, the ACC surface is rough (as mentioned
above and shown in Figure S3), and, as it will be shown, water molecules

Figure 1. Representation of Ca2+ ions with different average coordination numbers in the different systems analyzed. The Ca2+ ions with an oxygen
coordination number between 6 and 7 (Ca6) are in red, the ones with an oxygen coordination number between 7 and 8 (Ca7) are shown in orange and
with an oxygen coordination number between 8 and 9 (Ca8) are shown in green. The Cax−Cax interactions are shown using a line representation where
the cutoff between like calciums is set at 5.2 Å, which is the first minimum in the Ca−Ca radial distribution function. Side views are shown of (a) bulk
ACC1, (b) bulk ACC2, (c) slab ACC1, and (d) slab ACC2. In (c) and (d) the interfaces with the solution are at the top and bottom of the images along
the Z direction, shown in the image by the blue arrow. Also shown are the Ca−O coordination values as a function of proximity to the ACC slab surfaces
(e) with the ACC1 (blue) and ACC2 (red). The vertical lines represent the position where the density of the ions is half that of the bulk structure. We
consider this as a transition point between the solution and solid ACC.
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penetrate extensively inside it during equilibration. The residence time
of the water molecules will be highly dependent upon their depth within
the structure and their interactions with the ionic framework. Some
water molecules which are embedded within the ionic structure will have
infinite residence times.

■ RESULTS

ACC Bulk and Surface Structure. The PDFs obtained for
both ACC1 and ACC2 were approximately the same (Figure S4)
and compared well to experimental data,28 confirming that
structural water does not significantly affect ion coordination
spheres in ACC, as recently shown by Bushuev et al.45

Analysis of the average number of oxygens (both from water
molecules and carbonate ions) in Ca2+ ion coordination shells
showed a broad distribution spanning values between 6 and 9, as
shown in previous work.27 This was then analyzed by separating
the Ca2+ ions as a function of the average number of oxygens in
their coordination shell. The results showed that most of the
Ca2+ ions in bulk ACC1 had either an average coordination
number between 6 and 7 (Ca6) or between 7 and 8 (Ca7), as
shown in Figure 1a. While the distribution of average
coordination shows a single, broad peak in the bulk structure
(see for example Figure S5), it is interesting to note that the
spatial distribution of Ca2+ with relatively low (Ca6) or high
(Ca7) coordination is nonuniform. Two distinct regions are
shown using red and orange bonds in Figure 1a. In ACC2 the
structure was dominated by Ca7 species with a small number of
Ca8 (oxygen coordination number between 8 and 9) and Ca6.
While the number of the latter two species was small, their
clustering into dimers, trimers, and (rarely) larger clusters could
still be observed within the bulk structure.
The results obtained for both ACC1 and ACC2 suggest that, in

a bulk macroscale scenario, different ACC domains could exist
and that these would be populated by calcium ions with different
coordination numbers. This could be linked to the reported ACC
polyamorphism.41

When water molecules were added to the ACC in the
simulation cell to create an interfacial system, the structures of
both hydrous and anhydrous ACC reconfigured compared to
their bulk counterparts. In ACC1, shown in Figure 1c, more Ca7
species were observed at the interface than the bulk, while the
Ca6 were concentrated at the center of the slab. Additionally, Ca8
formed at the surface. This observation was confirmed by
plotting the distribution of coordination number as a function of
absolute position, presented in Figure 1e. In the center of the
ACC1 slab, the average coordination number is close to seven,
and as we move toward the interface this increases to eight. The
decrease of the average, after this maximum close to the interface,
is due to the dissolution of Ca2+ ions into solution, which, as
Raiteri et al. showed, have an equilibrium coordination number
close to 7.2 when using the current force field.46 This effect was
much less pronounced in ACC2 (Figure 1d) with small increases
in the number of Ca8 species at the surface, while the number of
both Ca6 and Ca7 species slightly decreased. ACC2 was,
nonetheless, still dominated by Ca7. The average coordination
number slightly increases as you go from the center of the slab to
the interface (Figure 1e), confirming that as the number of water
molecules increases within ACC, the number of oxygens in the
Ca2+ ions coordination shell increases. This is interesting as
within anhydrous ACC and in water the number of oxygens
within the coordination shell of Ca2+ ions is closer to 7 (7.2 in
water43 and 7.0 in ACC1), whereas the number gets closer to 8 as
the amount of water within ACC increases. Thus, water
molecules, being less bulky than carbonate ions, increase the
number of oxygens in the Ca2+ ion coordination shells, within
amorphous calcium carbonate, by penetrating into the spaces left
between the carbonates.
Between the water and the ACC, regardless of the hydration

level, a diffuse interface formed. In the case of ACC1, which was
anhydrous, Figure S6 shows that water penetrated approximately
6 Å into the structure. Figure S6 also shows that, compared to the
crystalline surfaces,22,47 the ACC surfaces do not structure water

Figure 2.Diffusion profiles of the different elements of the system along the Z axis. (a) Ca2+, (b) the carbon in the CO3
2− ion, and (c) the oxygen of the

water molecule. The blue line depicts the result obtained from ACC1 and the red line from ACC2. The ACC in all figures resides approximately between
37 and 63 Å along the Z axis coordinate. In (c), the gap in the blue curve is due to the absence of water molecules in the center of the ACC1 slab. The
error bars represent the standard deviation of the averaged data. (Note that some error bars are larger than what would be expected in the bulk and close
to the interface. This is because we used the initial position of the ions when computing the averages as a function of the position normal to the surface
and sometimes the ion diffused to a position where its dynamics were very different from its starting point.)
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molecules as strongly. The water layers are diffuse and do not
differ much from the bulk structure. This is in contrast to the
water structure at the interface with crystalline surfaces.44,47,48 In
the case of calcite, for example, the first water layer can be four
times as dense as in the bulk liquid.22 By contrast, here the first
peak is at most 1.2 times the bulk value (Figure S6). This is
important as incoming molecules will not have to compete with
water molecules strongly bound to the surface as seen for crystal
surfaces. A lack of regularly arranged water molecules implies that
the free energy barrier associated with the binding process will be
smaller than that for a crystalline surface.23

The diffusion coefficients of the water molecules and the ions
along the Z direction (perpendicular to the surface formed
between the water molecules and the ACC) of the system have
also been analyzed and are presented in Figure 2
Within a bulk solid, the movement of the atoms can be

separated into several mechanisms: vibration around lattice
positions, short-range hopping from one site to another, and
long-range bulk diffusion. It is possible that with longer time scale
simulations a long-range diffusion could be captured; however,
this would have little effect on the overall bulk structure. In this
work we present the short distance diffusion coefficients (i.e.,
capturing the first two mechanisms). The values measured in this
way encompass short-range hopping between sites and help us to
understand the dynamics and mobility of the ions in the
structure. The mobility of the ions is likely to be important in
understanding relaxations around binding molecules and
structural relaxations. Additionally, this methodology has been
employed for other simulation work on ACC allowing us to
compare and contrast. The values compare well with previous
ACC simulations (Bushuev et al.45) and are larger than values
obtained for calcite,49 which is sensible.
Whereas the diffusion of water molecules at the surface does

not appear to be strongly perturbed compared to the bulk, there
was an increase of up to two orders of magnitude in the diffusion
coefficients of the surface ions compared to those in bulk ACC.
An increased mobility suggests that ions could restructure
around incoming molecules and that formation of crystalline
nuclei or dissolution is potentially more likely. Interestingly,
there is not a large difference in the diffusion coefficient of the
ions between ACC1 and ACC2, suggesting that the presence of

water within the bulk of the structure does not have an important
effect on the dynamics of the system at the surface or in the bulk.

Binding of Amino Acids onto ACC.While the free energy
profiles for the binding of amino acids approaching ACC surfaces
have been calculated, and were observed to converge on the time
scale of the simulations (at least 3 ns for each window for a total
of 72 ns for the umbrella sampling simulations), the ACCs
analyzed in this study were not fully relaxed, and the natural
dynamics of ions in ACC were allowed to evolve during the
simulations. Hence, there may be some reconstruction of the
surface in different umbrella sampling windows that should
reflect the natural restructuring of the ionic network as molecules
approach the surface. Additionally, as shown in Figure S3, the
surface is rough, with some ions being partially dissolved.
During the standard MD long-time scale simulations, it was

observed that the configurational energy of the ACCs, shown in
Figure S7, did not reach a steady state due to a very slow
relaxation of the ionic network. This is similar to what was
observed for nanoparticles by Bano et al.44 It is also important to
realize that the shift in configurational energy observed is
relatively small. As summarized in Table S1, it ranges between 1
and −40 kJ mol−1 ns−1, which could match, for instance, the
change in energy associated with the formation of a hydrogen
bond each ns. A thorough analysis of the ACC structures using
multiple order parameters including the Steinhardt Q6 bond
order parameter (Figures S8 and S9), the Ca−O coordination
number (Figure S10), the angles of the carbonates with respect
to the x−y plane (parallel to the surface) (Figures S11 and S12)
and the radial distribution functions (Figure S13) did not
indicate large variations in the different systems analyzed, and
these differences could not be correlated with the different
changes in configurational energies observed for the ACC. It is
thus unlikely that the free energy of binding would be changed
significantly by small reorganizations of the ACC surface like
those associated with the observed downward shift in the total
configurational energy. This was checked in detail for aspartic
acid on anhydrous ACC. The umbrella sampling simulations
were continued for 6 ns, and the free energy obtained from the
first half and the second half of the simulation time are presented
in Figure S14a. In Figure S14b the change in configurational
energy in one of the umbrella sampling window is shown. While
the latter continued to decrease, the free energy changes

Figure 3. (a) Binding free energies of amino acids to the ACC1 surface as a function of the distance between the surface and the carbon attached to the
amine. The green curve was obtained for glutamic acid, the purple one for aspartic acid, the red curve depicts glycine, while the blue one was obtained for
arginine. Amino acids on the surface of ACC1. (b) Glutamic acid, (c) glycine, (d) arginine, and (e) aspartic acid. Water was removed from the images for
clarity.
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obtained between the unbound and bound state for the two cases
agree to within 1 kJ mol−1, and along the curves in Figure S14a,
the difference in free energy changes are minimal (i.e., within the
thermal energy available at room temperature). The free energies
of binding calculated for all of the amino acids on both ACC1 and
ACC2 are favorable, and their values lie between −18 and −9 kJ
mol−1.
All of the free energy curves obtained for ACC1 are shown in

Figure 3a, and they all present a similar behavior. After the
minimum, found close to the surface (bound state), there is a
general increase in energy followed by a plateau (solvent-shared
bound state). The absence of a transition barrier in the free
energy curve between the two states is most likely due to the lack
of structuring of the water molecules at the surface. As described
above, in contrast to crystalline surfaces, ACC leads to only small
changes in the density of water molecules at the surface (Figure
S3). The plateau, instead, arises from interaction with partially
dissolved ions. As the ACC surface is not flat but is rough and
fluctuating, (Figure S3) the amino acids can interact with these
ions as they transition from/to the bulk solution. After this
plateau, the energy increases again slightly as the molecules enter
the bulk solution. The only amino acid showing different
behavior is glycine. Here there is a transition barrier of 10 kJ
mol−1 between the bound state and the solvent shared bound
state, which is 4 kJ mol−1 less stable than the bound state. This
could be due to a slightly different configuration of the ions in the
region where this molecule binds. Indeed, by looking at Figure
3c, it can be seen that glycine seems more embedded in the
surface than the other molecules. As none of the other free
energy curves show any transition barrier, their attachment
should be limited only by concentration, diffusion, and
competition between molecules and other species in solution.
On ACC1 there is a clear difference between negatively

charged and neutral or positively charged molecules. Arginine
and glycine show binding energies of −17 kJ mol−1, while
aspartic acid and glutamic acid binding energies are close to −10
kJ mol−1 (see Table 1). As presented in Figure 3be, all of the

amino acids bind to ACC1 via the amine group, or in the case of
arginine, via the guanidine group. This is also observed in the
density profiles obtained from the long time-scale simulations
shown in Figure 4. The carboxylate groups only rarely interact
with the surfaces. In contrast, the HN (hydrogens attached to
nitrogen) density profile shown in red in Figure 4 tends to be
closely followed by carbonates (purple line); thus, the free energy
difference observed above could be due, mostly, to Coulombic
energy effects.
ACC2 presents more variations between the free energy curves

(Figure 5a).While the one obtained for glutamic acid is similar to
what was described above, the results for the other curves are
different. Glycine shows a broad minimum in the free energy,
which slowly increases until the dissolved state is seen at large
separations. Similarly, the free energy curve for aspartic acid does
not display a metastable, solvent-shared bound state and the
energy quickly increases with distance until dissolution. Arginine

on ACC2 shows a very wide basin close to the surface with three
distinct minima representing slightly different configurations
shown in Figure S15. From Figure S15a, at the free energy
minimum closest to the surface the arginine binds through all of
the functional groups present in the molecule (which lie close to
the surface). Figure S15b shows the most stable configuration,
where the molecules bind only through the amine group. The
final minimum, the furthest from the surface, arises from the
interaction between the guanidine group and a carbonate ion
(Figure S15c). Then, the free energy slightly increases to a small
plateau and increases again as the molecule detaches from the
surface. The binding free energy of the molecules on ACC2,
ranges between−13.2 and−17.8 kJ mol−1 (summarized in Table
1). In general, the binding free energy of the molecules on ACC2
is more favorable than ACC1. While for glycine and arginine the
change between ACC1 and ACC2 is on the order of the room
temperature thermal energy (about 2.5 kJ mol−1), aspartic acid
attachment on ACC2 is 7.1 kJ mol−1 more favorable than on
ACC1. This molecule is seen, in Figure 5e, to bind to the surface
through both the carboxylate and amine groups, while on ACC1
the aspartic acid only binds via the amine group (Figure 3e). This
subtle change in the favored configuration could explain the
change in energy.
As shown in Figure 5b−e, the binding on this surface also

occurs mostly through the amine or guanidine groups. Aspartic
acid and arginine, however, also bind via the carboxylate moiety.
This is similar to what was observed in the density profiles of the
long time scale simulations shown in Figure 6. The difference is
that, in the density profiles in Figure 6, only glutamic acid binds
via a carboxylate group. This again shows that different binding
pathways are present on the surface and that these go through
some continuous reconfiguration, at least on the time scale of the
current simulations. This can have an effect on the way that the
molecule binds to the surface. However, as for ACC1, there is a
clear trend: the nitrogen-bearing groups are obviously the
preferred mode of binding.
The density profiles presented in Figures 4 and 6 also show

that, during long time scale simulations, some of the molecules
slowly start to be incorporated within the structure. Often, the
increase in density of the amines is closely followed by an
increase in density of the carbonate ions. The surface, being more
mobile than the bulk, reacts to the presence of the amino acid by
optimizing the position of the ions. This allows a maximum
interaction between the Ocarbonate and the HN of the amine or
guanidine groups.
The geometrical parameters of the hydrogen bonds formed

between the amine groups and the carbonate ions are
summarized in Table S2. In general, the donor−acceptor
(NamineOcarbonate) distance lies between 2.6 and 3.5 Å, and
the angle formed (Namine−Hamine−Ocarbonate) lies between 144
and 171°. This agrees well with the gas phase geometry
optimization at the B3LYP/6-311+G level of theory calculated in
a previous investigation.25 The values depict hydrogen bonds
that are mostly electrostatic.

Water Structure at ACC Surfaces and Effect of Amino
Acid Binding. As recognized by Dorvee and Veis, the residence
time of water molecules in coordination shells around the ions is
an important consideration for the kinetics of nucleation, growth
and crystallization.50 A decrease in the water residence time
would probably indicate that the energy barrier at the transition
between water molecules in ion coordination shells is smaller,
and thus that exchange reactions will be facilitated. Organic
molecules are known to modify water structure in their

Table 1. Summary of the Free Energy of Binding (kJ mol−1)

ACC1 ACC2

arginine −17.4 ± 0.5 −15.4 ± 0.6
aspartic acid −10.8 ± 1.3 −17.9 ± 0.3
glutamic acid −9.4 ± 0.4 −13.2 ± 0.2
glycine −16.8 ± 0.2 −17.9 ± 0.4
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Figure 4. Density profiles of water (green line), carbonate (purple line), calcium (blue line), N (nitrogen in amine or guanidine group - red line), and
carboxylate oxygens (light blue line), obtained from ACC1. From left to right and top to bottom: aspartic acid, glutamic acid, arginine, and glycine. The
density of the carboxylate oxygens and the nitrogen of the amines was multiplied by 30 to make them visible in the image.

Figure 5. (a) Binding free energies of amino acids to an ACC2 surface as a function of the distance between the surface and the carbon attached to the
amine. The green curve was obtained for glutamic acid, the purple one for aspartic acid, the red curve depicts glycine, while the blue one was obtained for
arginine. Amino acids on the surface of ACC2. (b) Glutamic acid, (c) glycine, (d) arginine, and (e) aspartic acid. Water was removed from the images for
clarity.

Figure 6. Density profiles of water (green line), carbonate (purple line), calcium (blue line), N (nitrogen in amine or guanidine group - red line), and
carboxylate oxygens (light blue line), obtained from ACC2. From left to right and top to bottom: aspartic acid, glutamic acid, arginine, and glycine. The
density of the carboxylate oxygens and the nitrogen of the amines was multiplied by 30 to make them visible in the image.
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surroundings,22 and thus they might also be able to affect water
dynamics.
To demonstrate that the simulation time did not affect the

observations presented here, in Figure S16 the average times that
water resided in the coordination shell of calcium ions and
carbonate oxygens in hydrous and anhydrous ACC are shown for
simulations of both 6 and 10 ns. Clearly, increasing the
simulation time increases the time that water molecules remain
in the shells of atoms in the bulk system. At the surface, however,
the calculated times are the same for both simulations,
demonstrating that they have reached an equilibrium.
The average time that water molecules stayed in the

coordination shells is very similar for ACC1 and ACC2 for both
the surface Ocarbonates and Ca2+ ions, as shown in Figure 7. The
differences observed in the central bulk region arise due to the
lack of water in the center of ACC1. The values found within the
first 6 Å of the ACCs’ surfaces ranged from 32 to 584 ps and from
272 to 2767 ps, for the Ocarbonates and the Ca

2+ ions, respectively.

The smallest value found for water molecules in the Ocarbonates

coordination shell is larger than the average time for water
molecules within the coordination shell of the carbonate ion in
bulk solution. This is because Ca2+ ions, present at the ACC
surface, impose additional constraints on the dynamics of water
molecules, as shown in Figure S17. The values obtained during
this study when carbonates (∼14.5 ps) and calcium (170 ps) are
present in solution are slightly larger than previous MD
simulations (carbonates -8 ps, calcium 87 ps).51 The difference
between the calculated values stems from the model used for the
calcium carbonate−water interaction. For the potential used in
this study, the interactions were fitted to the dissolution free
energy of the ions.43 Recently, De La Pierre et al.41 calculated the
residence times of water molecules within the coordination shell
of Ca2+ ions in a {104} plane of calcite presenting different steps.
The values they found ranged from 0.14 to 60 ns, but most values
were close to 2 ns. In this case the outermost layers showed
values slightly lower on average and were closer to 1 ns, which is

Figure 7.Average times of water molecules within (a) Ca2+ ion and (b)Ocarbonate coordination shell. The green line in the images relates to ACC1 and the
orange line to ACC2.

Figure 8.Average times of water molecules within Ca2+ ions andOcarbonate coordination shell as a function of their position normal to the surface, for both
ACC1 and ACC2. The different lines were obtained from simulations containing different amino acids. The green curve was obtained for glutamic acid,
the purple one for aspartic acid, the red curve depicts glycine, while the blue one was obtained for arginine.
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sensible as the ACC surface is rough and does not structure water
as much as calcite, as discussed in the previous sections.
In Figure 8 the average time that water molecules spend within

the coordination shell of atoms, depending on their absolute
position and for the different amino acids, is presented. The
distributions are very similar to those for the ACCs without
additives. Amino acids do not seem to have a large impact on the
average time that water molecules stay in the coordination shells.
This is probably because their effect is localized. It would be
complicated to capture exactly how the amino acids modify these
average times on a surface as complex as ACC, and to compare
the amino acids with one another. As the ACC surface is rough
and changes in time, and the amino acids bind to different
positions on the surface, examining this issue will require a more
focused approach which we leave for future work.

■ DISCUSSION

ACC interfaces with water are still poorly defined and
experimental studies examining this ubiquitous interface are
lacking. The ACCs investigated in this study were shown to have
a bulk PDF matching the one obtained experimentally. Analysis
of the coordination number of the Ca2+ ions showed a broad
distribution. This was divided by separating the calcium ions in
different coordination bins. The results showed that two main
subpopulations of Ca2+ ions can be defined in bulk ACC1: one
having a coordination number between 7 and 8 and the other
having a coordination number between 6 and 7. Similarly, for
ACC2, calcium ions either had a coordination number falling
between 7 and 8 or a coordination number between 8 and 9. For
both ACCs, it was observed that calcium ions with the same
coordination tended to cluster together. Ca2+ ion populations
with different coordination numbers could explain the change in
the 13C NMR shift observed when precipitating a calcium
carbonate solution at different pHs.52 Changing the pH could
change their distribution, thereby modifying the NMR shift and
potentially influencing polymorph selection.
When the ACC is in contact with water to create a diffuse

interface, the ratio between the Ca6 and the Ca7 ions in ACC1
changes from 1.4 to 0.4. The changes in ACC2 are less significant,
but an increase of Ca8 is observed at the surface. It seems that in
general the surface of ACC will be populated by Ca2+ ions with a
higher number of oxygens in their coordination shell. The
smaller size of water molecules allows them to enter into the
spaces between carbonate ions, which are not accessible by other
carbonate ions. This is clear when looking at ACC2 where the
structure is dominated by Ca7 both in bulk and when cut in a slab.
The increase in the number of calcium ions with larger oxygen

coordination number is not only due to the presence of water at
the surface, but also due to its the penetration into the first 6 Å of
the ACC surface. This is most prominent for ACC1 as this surface
is initially anhydrous but after 45 ns of simulation time water
penetrated up to 6 Å in depth as also shown by Raiteri andGale.23

This is important as anhydrous ACC may sometimes be
considered as completely free of water, which is unlikely to be
the case at the interface when in contact with aqueous solutions.
Water, however, will diffuse within the surface when in solution,
increasing the diffusion of the ions and potentially allowing them
to reorganize and slowly form the most stable crystal lattice
under the given conditions. This mechanism could explain the
quick transformation of anhydrous ACC, when introduced in
solution, into one of the stable crystalline structures.4 It will be
more likely for a crystalline nucleus to form in the surface region,

where reconstruction is facilitated by the presence of water
molecules.
Analysis of the ACC surface showed that this is diffuse and

does not lead to a strong structuring of the water layers22,23 as
seen in the case of crystalline materials.22,26,47,48 Additionally, the
results obtained are comparable to previous observations
gathered using different force fields (including the one used in
the current study) to model the calcium carbonate system.22,23

This suggests that the water structure at the interface of ACC is
only weakly dependent upon the chosen force field.
All amino acids analyzed showed a favorable free energy of

binding to the surface of ACC. This might be a property of the
amorphous surface, where the ions can diffuse two orders of
magnitude faster than in the bulk solid as mentioned above. The
result is that the ionic framework can reorganize to maximize the
favorable interactions with the incoming molecules. It could also
be that the ACC surface is irregular and presents a number of low
energy paths to binding. Previous calculations by Raiteri et al.,
using nanoparticles of 36 formula units, showed that the barrier
to attachment of aspartic acid and acetate was less than 2 kJ
mol−1, which is below thermal energies at room temperature
(about 2.5 kJ mol−1). In good agreement, using a different
potential, the largest barrier to attachment found here was of 4 kJ
mol−1 observed for glycine on ACC1, while the other molecules
did not show any transition barrier between the dissolved and
bound states. Comparison of the change of free energy for the
binding of aspartic acid found by Raiteri et al. and the current
calculation are, however, considerably different. Here a free
energy change of −10.8 kJ mol−1 was found, while Raiteri et al.
found a value of approximately−2 kJ mol−1. The difference could
be ascribed to the force field chosen for the organic molecules,
but it could also arise from the difference in the ACC sampled.
Raiteri et al. investigated a 36 units nanoparticles and here a
surface containing 294 units was analyzed. Additionally, as
mentioned in the Methods section, the free energy of binding of
aspartic acid to calcium obtained here and in the work of Raiteri
et al. is considerably different. Their value24 was more
exothermic, −12.2 kJ mol−1 compared to the value found here
of −4.5 kJ mol−1 (experimental value is −6.7 kJ mol−1).37 While
not explicitly mentioned in their text, the binding could also be
different. In this work, it was found that the amino acids
predominantly attached to the surface via the amine moiety,
while in their work this is not discussed, but it can be assumed
that the interaction was through the carboxylate group. It is
worth mentioning that for anhydrous nanoparticles of similar
sizes to the ones analyzed by Raiteri et al.,24 Finney and Rodger53

found that the surface could be dominated by negatively charged
carbonate ions before relaxation in water, which would add a
further explanation for the difference found in the free energy of
binding. In this work the concentration of the different ions on
the surface is similar, as shown by the density plot in Figures 4, 6,
S6.
All molecules also showed a favorable change in Helmholtz

free energy upon binding. Experimentally, Picker et al. showed
that glutamic acid, aspartic acid, and glycine all had an impact on
the solubility of ACC, implying that they either interact with the
surface or that they modify its structure during precipitation.54

The study of Saharay and Kirkpatrick showed that the free
energy released from the attachment of calcium carbonate to
either guanidine or acetate was approximately the same.25 The
difference between the two molecules lay in the energy barrier at
the transition state. The free energy barrier for the association
with acetate was approximately twice as large as the thermal
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energy fluctuations at room temperature, while the one for
guanidine was approximately equal. Thus, it is easier for the
positively charged guanidine group to interact with ion pairs. A
similar result is observed in the present simulations, where all of
the amino acids bind through the amine or guanidine groups on
both ACC1 and ACC2. Such binding will not be able to occur in
peptides and proteins where the basic tails of the amino acids are
confined to the backbone of the molecule. Thus, studies using
monomeric units of proteins or fragments will not be truly
representative of the full molecule. Arginine (and one would
expect lysine) is the only exception to this. Its free energy of
binding in Figure 5 and the associated snapshots taken at the
different minima presented in Figure S3 clearly show that
binding through either the guanidine or the amine group is
energetically similar. In this case the binding should also
represent what happens in proteins if steric hindrances are not
considered, and this was observed when analyzing the binding of
ovocleidin-17 on amorphous surfaces.22

The most favorable binding energy on ACC1 was observed for
arginine and glycine, the former being a basic amino acid while
the latter is neutral. The former is not usually considered
important in biomineralization, as it is found sparingly in protein
sequences involved in the process. However, this might be the
reason behind its rare observation. As it shows a stronger binding
to the surface than the negatively charged amino acids sampled
here, it could potentially lock the protein onto the surface and
not allow for a subsequent processing step, which might require
another organic molecule or another functional domain in the
protein itself. Previous simulations of ovocleidin-17 binding on
ACC also showed that the attachment is mostly through
positively charged residues. They also proposed that the protein
could catalyze the transformation of ACC to calcite, then detach
from the surface ready for another cycle. This suggests that basic
residues may operate as catalyzing agents for ACC conversion to
crystalline polymorphs as indicated experimentally,17 while
acidic residues may not possess the same properties.
On ACC2, the molecules gave a smaller spread of values for the

binding energy, and the two strongest binders were glycine and
aspartic acid. It seems that the type of the molecule is less
important on this hydrous surface. Interestingly, the largest free
energy difference in attachment between ACC1 and ACC2 is
found for aspartic acid and glutamic acid, while glycine and
arginine bind with more or less the same strength to both
surfaces. Aspartic and glutamic acid both show a clear preference
for ACC2, which can be linked to a decrease in the Coulombic
forces. The presence of water will partially screen the charge of
the calcium ions in the vicinity of the amino acids as they bind to
the carbonate ion. The preference for ACC2 is interesting as it
gives clues to the role of these molecules in the stabilization of an
amorphous phase. In vitro, Gower et al. showed that polyaspartic
acid stabilized a proposed liquid amorphous structure, which has
been suggested as a mechanism to form the nonequilibrium
morphologies encountered in living systems.5 Acidic molecules,
are often found in proteins involved in inhibiting mineralization,
and these results further confirm their involvement in hydrous
ACC, which is often the first to precipitate from solution.5,55

Thus, these two acidic molecules could have an important role in
stabilizing the hydrous ACC until its morphology is fixed and
dehydration can proceed.
Another interesting aspect of the free energy of binding resides

in the difference in binding strength between aspartic acid and
glutamic acid. On both surfaces analyzed here, aspartic acid
binding was associated with a larger change in free energy. This is

somewhat counterintuitive as glutamic acid has an additional
carbon in its side chain making it more flexible. At a diffuse and
fluctuating interface, however, the ions tend to reorganize around
the incoming molecule, and, therefore, a longer chain is not
necessary to increase the binding strength by interacting with
multiple ions and the additional nonpolar carbon may interact
unfavorably with the polar environment of the ACC surface.
Analyzing the average times that water molecules stayed in the

shells of Ca2+ ions and the Ocarbonates atoms led to some
interesting results. At the surface of both the ACCs analyzed, the
water molecules appear to behave in a similar way with regard to
their diffusion coefficients and the time they spend within the
shells of the ions at the surface. This is also true for the averages
observed when the amino acids were added to the simulations.
This does not mean that the amino acids do not have an impact,
but their effect is probably localized, and thus looking at slices
through the surface did not highlight it. In general the observed
average time the water molecules remained within the
coordination shells fell between the value observed in bulk
water and the ones observed at the surface of calcite steps.41

In conclusion, the results obtained during this study indicate
that bulk ACC is composed of regions dominated by calcium
ions with different coordination numbers. This effect is clearer in
anhydrous ACC and could partially explain the different
structures observed experimentally leading to recent ideas
about polyamorphism. Additionally, the simulations show that
the penetration of water molecules within the ACC surfaces leads
to a restructuring of the surface, modifying the coordination shell
of the calcium ions by increasing the number of oxygens within it.
The surface will thus be at least partially hydrated in aqueous
solutions, leading to an increase in the diffusion coefficients of
the ions from the center of the slab to the surface. This would
facilitate the formation of nuclei for the subsequent crystal-
lization step, but also helps the reorganization of the ions around
incoming molecules, simplifying their attachment and partially
explaining the favorable change in the free energies upon binding
of all the molecules studied here. The attachment occurred
predominantly through positively charged groups, (the amine
and guanidine moieties), that were hydrogen bonded to
carbonate ions. Therefore, studies involving amino acids and/
or short peptides will usually not be representative of larger
proteins where the amine groups are involved in the peptide
bond. The simulations also showed a clear preference of the
negatively charged molecules for hydrated ACC (ACC2), which
explains their involvement in the inhibition of precipitation and
the stabilization of a liquid phase. In future work it would be
extremely interesting to investigate in more depth the effect of
the organic molecules on the structure of ACC and how this
affects the subsequent crystallization.

■ ASSOCIATED CONTENT

*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.cgd.7b00874.

The additional material provided includes the free energy
curve of binding obtained for the interaction of a Ca2+ ion
with aspartic acid, the position distributions sampled
during the umbrella sampling free energy calculations, an
example image of the ACC surface, the pair distribution
functions of the bulk ACCs analyzed, the Ca−Oall

coordination numbers of the ACCs, the density profiles
of the systems along the Z axis, the configurational energy
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of the analyzed systems as a function of the simulation
time, the rate of change of the configurational energy per
ns of simulation time, the distribution of the Q6 order
parameter of the ACCs in the presence of the amino acids,
the Ca−Oall coordination numbers of the ACCs in the
presence of the amino acids, the distribution of the angle of
the carbonate ions with respect to the x−y plane of the
ACCs in the presence of the amino acids, the radial
distribution function of the ACCs in the presence of the
amino acids, the free energy curve of the binding of
arginine to ACC1 obtained for different simulation times,
the configuration of arginine at the different minima in the
free energy curve, a summary of the hydrogen bonds
formed between the amino acids and the ACCs surfaces,
the distribution of water average residence times of the
ACCs for different simulation times, and an image
depicting a water molecule within the coordination shell
of a Ca2+ and CO3

2− ions. Sample input files can be found
in 10.15131/shef.data.5446723 (PDF)
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