173 research outputs found
Adiponectin and Cardiac Hypertrophy in Acromegaly
Background. Adiponectin is an adipocytes-derived hormone which has been shown to possess insulin-sensitizing, antiatherogenic, and anti-inflammatory properties. In acromegaly, the data on adiponectin is contradictory. The relationship between adiponectin levels and cardiac parameters has not been studied.Objectives. The aim of this study was to find out how adiponectin levels were affected in acromegalic patients and the relationship between adiponectin levels and cardiac parameters.Material and Methods. We included 30 subjects (15 male, 15 female), diagnosed with acromegaly and 30 healthy (10 male, 20 female) subjects. Serum glucose, insulin, GH, IGF-1 and adiponectin levels were obtained and the insulin resistance of the subjects was calculated. Echocardiographic studies of the subjects were performed.Results. We determined that adiponectin levels were significantly higher in the acromegalic group than the control group. In the acromegalic group, there was no statistically significant relation between serum adiponectin and growth hormone (GH), or insulin-like growth factor-1 (IGF-1) levels (p = 0.3, p = 0.1). We demonstrated that cardiac function and structure are affected by acromegaly. IVST, PWT, LVMI, E/A ratio, DT, ET, IVRT, VPR, and LVESV values were increased and the results were statistically significant. In the acromegalic group, adiponectin levels were positively related with left ventricle mass index (LVMI) but this correlation was found to be statistically weak (p = 0.03). In our study, there was a positive correlation between VAI and LVM. We also could not find any correlation between VAI and adiponectin levels.Conclusions. Although insulin resistance and high insulin levels occur in active acromegaly patients, adiponectin levels were higher in our study as a consequence of GH lowering therapies. Our study showed that adiponectin levels may be an indicator of the cardiac involvement acromegaly. However, the usage of serum adiponectin levels in acromegalic patients as an indicator of cardiac involvement should be supported with other, wide, multi-centered studies
A Low Profile Wideband Log Periodic Microstrip Antenna Design for C-Band Applications
In this study, a wideband low profile microstrip antenna design for C-band applications is presented. The proposed antenna consists of a monopol log periodic patch in the equilateral triangular dimensions with the microstrip line fed and a rectangular ground plane. The antenna has 9Ă—19.8 mm2 overall size, thickness of 1.6 mm and 4.3 dielectric constant. According to the simulation results, the proposed antenna has a very wide bandwidth while operating in the frequency band of 4.25-7.95 GHz and 5 GHz resonance frequency. The proposed antenna was also prototyped on FR4 substrate with the 0.02 tangent loss and the measurement results were quite similar by the simulated results
Immunostimulatory activity of polysaccharide-poly(I:C) nanoparticles
Cataloged from PDF version of article.Immunostimulatory properties of mushroom derived polysaccharides (PS) as stand-alone agents were tested. Next. PS were nanocomplexed with polyI:C (pIC) to yield stable nanoparticles around 200 nm in size evidenced by atomic force microscopy and dynamic light scattering analyses. PSs were selectively engaged by cells expressing TLR2 and initiated NF kappa B dependent signaling cascade leading to a Th1-biased cytokine/chemokine secretion in addition to bactericidal nitric oxide (NO) production from macrophages. Moreover, cells treated with nanoparticles led to synergistic IL6, production and upregulation of TNF alpha, MIP3 alpha, IFN gamma and IP10 transcript expression. In mice, PS-Ovalbumin-pIC formulation surpassed anti-OVA IgG responses when compared to either PS-OVA or pIC-OVA mediated immunity. Our results revealed that signal transduction initiated both by TLR2 and TLR3 via co-delivery of pIC by PS in nanoparticle depot delivery system is an effective immunization strategy. The present work implicate that the PS and nucleic acid based nanoparticle approach along with protein antigens can be harnessed to prevent infectious diseases. (C) 2011 Elsevier Ltd. All rights reserve
An aquaporin 4 antisense oligonucleotide loaded, brain targeted nanoparticulate system design
Aquaporins (AQPs), members of the water-channel protein family, are highly expressed in brain tissue especially in astrocytic end-feet. They are important players for water hemostasis during development of cytotoxic as well as vasogenic edema. Increased expression of AQPs is important in pathophysiology of neurological diseases such as neuroinflammation and ischemia. Unfortunately, there are a few pharmacological inhibitors of AQP4 with several side effects limiting their translation as a drug for use in clinical conditions. Another therapeutic approach is using antisense oligonucleotides (ASOs) to block AQP4 activity. These are short, synthetic, modified nucleic acids that bind RNA to modulate its function. However, they cannot pass the blood brain barrier (BBB). To overcome this obstacle we designed a nanoparticulate system made up of chitosan nanoparticles surface modified with PEG and conjugated with monoclonal anti transferrin receptor-1 antibody via streptavidin-biotin binding. The nanocarrier system could be targeted to the transferrin receptor-1 at the brain endothelial capillaries through monoclonal antibodies. It is hypothesized that the nanoparticles could pass the BBB via receptor mediated transcytosis and reach brain parenchyma. Particle size, zeta potential, loading capacity and release profiles of nanoparticles were investigated. It was observed that all types of chitosau (CS) nanoparticles had positive zeta potential values and nanoparticle particle size distribution varied between 100 and 800 nm. The association efficiency of ASOs into the nanoparticles was between 80–97% and the release profiles of the nanoparticles exhibited an initial burst effect followed by a controlled release. The results showed that the designed chitosan based nanocarriers could be a promising carrier system to transport nucleic acid based drugs to brain parenchymaThis study is supported by The Scientific and Technological Research Council of Turkey (TUBITAK, Project Number: 110S460)S
Evaluation of whether the ACE gene I/D polymorphism constitutes a risk factor for chronic obstructive pulmonary disease in the Turkish population
Chronic obstructive pulmonary disease (COPD) is characterized by progressive airflow obstruction that occurs as a result of the normal inflammatory process to protect against harmful irritants and chemicals. Another physiological regulatory process, the renin angiotensin system (RAS), plays an important role in the pathology of many diseases. Angiotensin converting enzyme (ACE) is a key enzyme of RAS. We investigated the frequency of the ACE gene I/D polymorphism in patients with COPD in Turkey. This study was performed on 47 unrelated patients with COPD and 64 healthy subjects. DNA samples were isolated from peripheral blood, and ACE DNA was amplified by polymerase chain reaction. The frequencies of ACE genotypes were 27.7, 55.3, and 17% for DD, ID, and II in the COPD group, respectively, and 43.8, 43.8, and 12.4% in the control group. There was no statistically significant difference between groups (χ2 = 3.078; df = 2; P = 0.220). The distributions of ACE gene D alleles were 38.2% (N = 52) in the COPD group and 61.8% (N = 84) in the control group; and those of I alleles were 48.8% (N = 42) in the COPD group and 51.2% (N = 44) in the control group. There was no statistically significant difference between groups for allele frequency (χ2 = 2.419; df = 2; P = 0.120). We believe these results can be useful for large-scale population genetic research considering the frequency of the ACE gene variation in COPD patients in the Turkish population. © FUNPEC-RP
Glucometabolic Alterations In Pregnant Women With Overweight or Obesity But Without Gestational Diabetes Mellitus – An Observational Study
Introduction: Maternal overweight is a risk factor for Gestational Diabetes Mellitus (GDM). However, emerging evidence suggests that an increased maternal body mass index (BMI) promotes the development of perinatal complications even in women who do not develop GDM. This study aims to assess physiological glucometabolic changes associated with increased BMI.
Methods: 21 women with overweight and 21 normal weight controls received a metabolic assessment at 13 weeks of gestation, including a 60 min frequently sampled intravenous glucose tolerance test. A further investigation was performed between 24 and 28 weeks in women who remained normal glucose tolerant.
Results: At baseline, mothers with overweight showed impaired insulin action, whereby the calculated insulin sensitivity index (CSI) was lower as compared to normal weight controls (3.5 vs. 6.7 10-4 min-1 [microU/ml]-1, p=0.025). After excluding women who developed GDM, mothers with overweight showed higher average glucose during the oral glucose tolerance test (OGTT) at third trimester. Moreover, early pregnancy insulin resistance and secretion were associated with increased placental weight in normal glucose tolerant women.
Conclusion: Mothers with overweight or obesity show an unfavourable metabolic environment already at the early stage of pregnancy, possibly associated with perinatal complications in women who remain normal glucose tolerant
Yeast thioredoxin reductase Trr1p controls TORC1-regulated processes
The thioredoxin system plays a predominant role in the control of cellular redox status. Thioredoxin reductase fuels the system with reducing power in the form of NADPH. The TORC1 complex promotes growth and protein synthesis when nutrients, particularly amino acids, are abundant. It also represses catabolic processes, like autophagy, which are activated during starvation. We analyzed the impact of yeast cytosolic thioredoxin reductase TRR1 deletion under different environmental conditions. It shortens chronological life span and reduces growth in grape juice fermentation. TRR1 deletion has a global impact on metabolism during fermentation. As expected, it reduces oxidative stress tolerance, but a compensatory response is triggered, with catalase and glutathione increasing. Unexpectedly, TRR1 deletion causes sensitivity to the inhibitors of the TORC1 pathway, such as rapamycin. This correlates with low Tor2p kinase levels and indicates a direct role of Trr1p in its stability. Markers of TORC1 activity, however, suggest increased TORC1 activity. The autophagy caused by nitrogen starvation is reduced in the trr1Δ mutant. Ribosomal protein Rsp6p is dephosphorylated in the presence of rapamycin. This dephosphorylation diminishes in the TRR1 deletion strain. These results show a complex network of interactions between thioredoxin reductase Trr1p and the processes controlled by TOR
Continued 26S proteasome dysfunction in mouse brain cortical neurons impairs autophagy and the Keap1-Nrf2 oxidative defence pathway
The ubiquitin–proteasome system (UPS) and macroautophagy (autophagy) are central to normal proteostasis and interdependent in that autophagy is known to compensate for the UPS to alleviate ensuing proteotoxic stress that impairs cell function. UPS and autophagy dysfunctions are believed to have a major role in the pathomechanisms of neurodegenerative disease. Here we show that continued 26S proteasome dysfunction in mouse brain cortical neurons causes paranuclear accumulation of fragmented dysfunctional mitochondria, associated with earlier recruitment of Parkin and lysine 48-linked ubiquitination of mitochondrial outer membrane (MOM) proteins, including Mitofusin-2. Early events also include phosphorylation of p62/SQSTM1 (p62) and increased optineurin, as well as autophagosomal LC3B and removal of some mitochondria, supporting the induction of selective autophagy. Inhibition of the degradation of ubiquitinated MOM proteins with continued 26S proteasome dysfunction at later stages may impede efficient mitophagy. However, continued 26S proteasome dysfunction also decreases the levels of essential autophagy proteins ATG9 and LC3B, which is characterised by decreases in their gene expression, ultimately leading to impaired autophagy. Intriguingly, serine 351 phosphorylation of p62 did not enhance its binding to Keap1 or stabilise the nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factor in this neuronal context. Nrf2 protein levels were markedly decreased despite transcriptional activation of the Nrf2 gene. Our study reveals novel insights into the interplay between the UPS and autophagy in neurons and is imperative to understanding neurodegenerative disease where long-term proteasome inhibition has been implicated
Diagnostic accuracy and limit of detection of ten malaria parasite lactate dehydrogenase-based rapid tests for Plasmodium knowlesi and P. falciparum.
Background: Plasmodium knowlesi causes zoonotic malaria across Southeast Asia. First-line diagnostic microscopy cannot reliably differentiate P. knowlesi from other human malaria species. Rapid diagnostic tests (RDTs) designed for P. falciparum and P. vivax are used routinely in P. knowlesi co-endemic areas despite potential cross-reactivity for species-specific antibody targets. Methods: Ten RDTs were evaluated: nine to detect clinical P. knowlesi infections from Malaysia, and nine assessing limit of detection (LoD) for P. knowlesi (PkA1-H.1) and P. falciparum (Pf3D7) cultures. Targets included Plasmodium-genus parasite lactate dehydrogenase (pan-pLDH) and P. vivax (Pv)-pLDH. Results: Samples were collected prior to antimalarial treatment from 127 patients with microscopy-positive PCR-confirmed P. knowlesi mono-infections. Median parasitaemia was 788/µL (IQR 247-5,565/µL). Pan-pLDH sensitivities ranged from 50.6% (95% CI 39.6-61.5) (SD BIOLINE) to 87.0% (95% CI 75.1-94.6) (First Response® and CareStart™ PAN) compared to reference PCR. Pv-pLDH RDTs detected P. knowlesi with up to 92.0% (95% CI 84.3-96.7%) sensitivity (Biocredit™). For parasite counts ≥200/µL, pan-pLDH (Standard Q) and Pv-pLDH RDTs exceeded 95% sensitivity. Specificity of RDTs against 26 PCR-confirmed negative controls was 100%. Sensitivity of six highest performing RDTs were not significantly different when comparing samples taken before and after (median 3 hours) antimalarial treatment. Parasite ring stages were present in 30% of pre-treatment samples, with ring stage proportions (mean 1.9%) demonstrating inverse correlation with test positivity of Biocredit™ and two CareStart™ RDTs.For cultured P. knowlesi, CareStart™ PAN demonstrated the lowest LoD at 25 parasites/µL; LoDs of other pan-pLDH ranged from 98 to >2000 parasites/µL. Pv-pLDH LoD for P. knowlesi was 49 parasites/µL. No false-positive results were observed in either P. falciparum-pLDH or histidine-rich-protein-2 channels. Conclusion: Selected RDTs demonstrate sufficient performance for detection of major human malaria species including P. knowlesi in co-endemic areas where microscopy is not available, particularly for higher parasite counts, although cannot reliably differentiate among non-falciparum malaria
- …