75 research outputs found

    Optimizing the use of pressurized bladders for the assembly of HL-LHC MQXFB magnets

    Full text link
    The use of pressurized bladders for stress control of superconducting magnets was firstly proposed at Lawrence Berkeley National Laboratory (LBNL) in the early 2000s. Since then, the so-called bladders and keys procedure has become one of the reference techniques for the assembly of high-field accelerator magnets and demonstrators. Exploiting the advantages of this method is today of critical importance for Nb3Sn-based accelerator magnets, whose production requires the preservation of tight stress targets in the superconducting coils to limit the effects of the strain sensitivity and brittleness of the conductor. The present manuscript reports on the results of an experimental campaign focused on the optimization of the bladders and keys assembly process in the MQXFB quadrupoles. These 7.2 m long magnets shall be among the first Nb3Sn cryomagnets to be installed in a particle accelerator as a part of the High Luminosity upgrade of the LHC. One of the main practical implications of the bladders technique, especially important when applied to long magnets like MQXFB, is that to insert the loading keys, the opening of a certain clearance in the support structure is required. The procedure used so far for MQXF magnets involved an overstress in the coils during bladder inflation. The work presented here shows that such an overshoot can be eliminated thanks to additional bladders properly positioned in the structure. This optimized method was validated in a short model magnet and in a full-length mechanical model, becoming the new baseline for the series production at CERN. Furthermore, the results are supported by numerical predictions using Finite Element models

    Wet deposition in the remote western and central Mediterranean as a source of trace metals to surface seawater

    Get PDF
    Abstract. This study reports the only recent characterization of two contrasted wet deposition events collected during the PEACETIME (ProcEss studies at the Air–sEa Interface after dust deposition in the MEditerranean Sea) cruise in the open Mediterranean Sea (Med Sea) and their impact on trace metal (TM) marine stocks. Rain samples were analysed for Al, 12 TMs (Co, Cd, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Ti, V and Zn) and nutrient (N, P, dissolved organic carbon) concentrations. The first rain sample collected in the Ionian Sea (Rain ION) was a typical regional background wet deposition event, whereas the second rain sample collected in the Algerian Basin (Rain FAST) was a Saharan dust wet deposition event. Even in the remote Med Sea, all background TM inputs presented an anthropogenic signature, except for Fe, Mn and Ti. The concentrations of TMs in the two rain samples were significantly lower compared to concentrations in rains collected at coastal sites reported in the literature, due to the decrease in anthropogenic emissions during the preceding decades. The atmospheric TM inputs were mainly dissolved forms, even in dusty Rain FAST. The TM stocks in the mixed layer (ML, 0–20 m) at the FAST station before and after the event showed that the atmospheric inputs were a significant supply of particulate TMs and dissolved Fe and Co for surface seawater. Even if the wet deposition delivers TMs mainly in soluble form, the post-deposition aerosol dissolution could to be a key additional pathway in the supply of dissolved TMs. At the scale of the western and central Mediterranean, the atmospheric inputs were of the same order of magnitude as ML stocks for dissolved Fe, Co and Zn, highlighting the role of the atmosphere in their biogeochemical cycles in the stratified Med Sea. In case of intense dust-rich wet deposition events, the role of atmospheric inputs as an external source was extended to dissolved Co, Fe, Mn, Pb and Zn. Our results suggest that the wet deposition constitutes only a source of some of dissolved TMs for Med Sea surface waters. The contribution of dry deposition to the atmospheric TM inputs needs to be investigated.</jats:p

    Overview of the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Forcing on the Mediterranean Climate (ChArMEx/ADRIMED) summer 2013 campaign

    Get PDF
    The Chemistry-Aerosol Mediterranean Experiment (ChArMEx; http://charmex.lsce.ipsl.fr) is a collaborative research program federating international activities to investigate Mediterranean regional chemistry-climate interactions. A special observing period (SOP-1a) including intensive airborne measurements was performed in the framework of the Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region (ADRIMED) project during the Mediterranean dry season over the western and central Mediterranean basins, with a focus on aerosol-radiation measurements and their modeling. The SOP-1a took place from 11 June to 5 July 2013. Airborne measurements were made by both the ATR-42 and F-20 French research aircraft operated from Sardinia (Italy) and instrumented for in situ and remote-sensing measurements, respectively, and by sounding and drifting balloons, launched in Minorca. The experimental setup also involved several ground-based measurement sites on islands including two ground-based reference stations in Corsica and Lampedusa and secondary monitoring sites in Minorca and Sicily. Additional measurements including lidar profiling were also performed on alert during aircraft operations at EARLINET/ACTRIS stations at Granada and Barcelona in Spain, and in southern Italy. Remote-sensing aerosol products from satellites (MSG/SEVIRI, MODIS) and from the AERONET/PHOTONS network were also used. Dedicated meso-scale and regional modeling experiments were performed in relation to this observational effort. We provide here an overview of the different surface and aircraft observations deployed during the ChArMEx/ADRIMED period and of associated modeling studies together with an analysis of the synoptic conditions that determined the aerosol emission and transport. Meteorological conditions observed during this campaign (moderate temperatures and southern flows) were not favorable to producing high levels of atmospheric pollutants or intense biomass burning events in the region. However, numerous mineral dust plumes were observed during the campaign, with the main sources located in Morocco, Algeria and Tunisia, leading to aerosol optical depth (AOD) values ranging between 0.2 and 0.6 (at 440 nm) over the western and central Mediterranean basins. One important point of this experiment concerns the direct observations of aerosol extinction onboard the ATR-42, using the CAPS system, showing local maxima reaching up to 150Mm(-1) within the dust plume. Non-negligible aerosol extinction (about 50Mm(-1)) has also been observed within the marine boundary layer (MBL). By combining the ATR- 42 extinction coefficient observations with absorption and scattering measurements, we performed a complete optical closure revealing excellent agreement with estimated optical properties. This additional information on extinction properties has allowed calculation of the dust single scattering albedo (SSA) with a high level of confidence over the western Mediterranean. Our results show a moderate variability from 0.90 to 1.00 (at 530 nm) for all flights studied compared to that reported in the literature on this optical parameter. Our results underline also a relatively low difference in SSA with values derived near dust sources. In parallel, active remote-sensing observations from the surface and onboard the F-20 aircraft suggest a complex vertical structure of particles and distinct aerosol layers with sea spray and pollution located within the MBL, and mineral dust and/or aged North American smoke particles located above (up to 6–7 km in altitude). Aircraft and balloon-borne observations allow one to investigate the vertical structure of the aerosol size distribution showing particles characterized by a large size (> 10 ÎŒm in diameter) within dust plumes. In most of cases, a coarse mode characterized by an effective diameter ranging between 5 and 10 ÎŒm, has been detected above the MBL. In terms of shortwave (SW) direct forcing, in situ surface and aircraft observations have been merged and used as inputs in 1-D radiative transfer codes for calculating the aerosol direct radiative forcing (DRF). Results show significant surface SW instantaneous forcing (up to (-90)Wm(-2) at noon). Aircraft observations provide also original estimates of the vertical structure of SW and LW radiative heating revealing significant instantaneous values of about 5 K per day in the solar spectrum (for a solar angle of 30 ) within the dust layer. Associated 3-D modeling studies from regional climate (RCM) and chemistry transport (CTM) models indicate a relatively good agreement for simulated AOD compared with observations from the AERONET/PHOTONS network and satellite data, especially for long-range dust transport. Calculations of the 3-D SW (clear-sky) surface DRF indicate an average of about -10 to -20Wm(-2) (for the whole period) over the Mediterranean Sea together with maxima (-50Wm(-2)) over northern Africa. The top of the atmosphere (TOA) DRF is shown to be highly variable within the domain, due to moderate absorbing properties of dust and changes in the surface albedo. Indeed, 3-D simulations indicate negative forcing over the Mediterranean Sea and Europe and positive forcing over northern Africa. Finally, a multiyear simulation, performed for the 2003 to 2009 period and including an ocean–atmosphere (O–A) coupling, underlines the impact of the aerosol direct radiative forcing on the sea surface temperature, O–A fluxes and the hydrological cycle over the Mediterranean.French National Research Agency (ANR) ANR-11-BS56-0006ADEMEFrench Atomic Energy CommissionCNRS-INSU and Meteo-France through the multidisciplinary programme MISTRALS (Mediterranean Integrated Studies aT Regional And Local Scales)CORSiCA project - Collectivite Territoriale de Corse through Fonds Europeen de Developpement Regional of the European Operational ProgramContrat de Plan Etat-RegionEuropean Union's Horizon 2020 research and innovation program 654169Spanish Ministry of Economy and Competitivity TEC2012-34575Science and Innovation UNPC10-4E-442European Union (EU)Department of Economy and Knowledge of the Catalan Autonomous Government SGR 583Andalusian Regional Government P12-RNM-2409Spanish Government CGL2013-45410-R 26225

    Spatial variation of trace metals within intertidal beds of native mussels (Mytilus edulis) and non-native Pacific oysters (Crassostrea gigas): implications for the food web?

    Get PDF
    Abstract Pollution is of increasing concern within coastal regions and the prevalence of invasive species is also rising. Yet the impact of invasive species on the distribution and potential trophic transfer of metals has rarely been examined. Within European intertidal areas, the non-native Pacific oyster (Crassostrea gigas) is becoming established, forming reefs and displacing beds of the native blue mussel (Mytilus edulis). The main hypothesis tested is that the spatial pattern of metal accumulation within intertidal habitats will change should the abundance and distribution of C. gigas continue to increase. A comparative analysis of trace metal content (cadmium, lead, copper and zinc) in both species was carried out at four shores in south-east England. Metal concentrations in bivalve and sediment samples were determined after acid digestion by inductively coupled plasma-optical emission spectrometry. Although results showed variation in the quantities of zinc, copper and lead (mg m-2) in the two bivalve species, differences in shell thickness are also likely to influence the feeding behaviour of predators and intake of metals. The availability and potential for trophic transfer of metals within the coastal food web, should Pacific oysters transform intertidal habitats, is discussed

    Parasite responses to pollution: what we know and where we go in ‘Environmental Parasitology’

    Full text link
    • 

    corecore