1,040 research outputs found

    The functionalization of carbon nanotubes using a batch oscillatory flow reactor

    Get PDF
    This paper describes an efficient method for the functionalizing of multi-walled carbon nanotubes (MWCNT) using oscillatory flow mixing (OFM). A 3. l batch oscillatory flow reactor (OFR) was designed and constructed for pilot scale functionalization of MWCNT in order to potentially improve their compatibility within a thermoplastic polyphenylene sulphide (PPS) matrix. The OFM batch reactor consisted of a jacketed cylindrical vessel with a vertical axial oscillator that contained a series of baffled mixing plates. MWCNTs dispersed in dimethylformamide (DMF) were introduced into the reactor and a two stage reaction for functionalizing MWCNTs with PPS compatible groups was carried out under oscillation of baffles at elevated temperatures. Fluid mixing observations in the reactor showed that MWCNTs formed a uniform dispersion of aggregated flocs before and during the functionalization reaction. On completion of the reaction and cessation of the oscillation, the aggregated flocs of MWCNT rapidly sedimented at the bottom of the reactor; hence could be collected as a concentrated mass thereby facilitating the separation of functionalized MWCNTs from the solvent. The functionalized MWCNTs were dried and then characterized by transmission electron microscopy, infrared spectroscopy as well as thermal gravimetric analysis in order to investigate the extent of MWCNT functionalization. The characterization results confirmed the effective and relatively uniform functionalization of the MWCNTs despite formation of aggregates, indicating that OFM provides a viable approach for functionalizing MWCNTs

    Untangling CP Violation and the Mass Hierarchy in Long Baseline Experiments

    Get PDF
    In the overlap region, for the normal and inverted hierarchies, of the neutrino-antineutrino bi-probability space for ΜΌ→Μe\nu_\mu \to \nu_e appearance, we derive a simple identity between the solutions in the (sin⁥22Ξ13\sin^2 2\theta_{13}, sin⁥Ύ\sin \delta) plane for the different hierarchies. The parameter sin⁥22Ξ13\sin^2 2\theta_{13} sets the scale of the ΜΌ→Μe\nu_\mu \to \nu_e appearance probabilities at the atmospheric ÎŽmatm2≈2.4×10−3\delta m^2_{atm} \approx 2.4 \times 10^{-3} eV2^2 whereas sin⁥Ύ\sin \delta controls the amount of CP violation in the lepton sector. The identity between the solutions is that the difference in the values of sin⁥Ύ\sin \delta for the two hierarchies equals twice the value of sin⁥22Ξ13\sqrt{\sin^2 2\theta_{13}} divided by the {\it critical} value of sin⁥22Ξ13\sqrt{\sin^2 2\theta_{13}}. We apply this identity to the two proposed long baseline experiments, T2K and NOÎœ\nuA, and we show how it can be used to provide a simple understanding of when and why fake solutions are excluded when two or more experiments are combined. The identity demonstrates the true complimentarity of T2K and NOÎœ\nuA.Comment: 15 pages, Latex, 4 postscript figures. Submitted to New Journal of Physics, ``Focus on Neutrino Physics'' issu

    Physics Potential of Very Intense Conventional Neutrino Beams

    Get PDF
    The physics potential of high intensity conventional beams is explored. We consider a low energy super beam which could be produced by a proposed new accelerator at CERN, the Super Proton Linac. Water Cherenkov and liquid oil scintillator detectors are studied as possible candidates for a neutrino oscillation experiment which could improve our current knowledge of the atmospheric parameters and measure or severely constrain the parameter connecting the atmospheric and solar realms. It is also shown that a very large water detector could eventually observe leptonic CP violation. The reach of such an experiment to the neutrino mixing parameters would lie in-between the next generation of neutrino experiments (MINOS, OPERA, etc) and a future neutrino factory.Comment: Talk given at the Venice Conference on Neutrino Telescopes, Venice, March, 200

    Unveiling Neutrino Mixing and Leptonic CP Violation

    Get PDF
    We review the present understanding of neutrino masses and mixings, discussing what are the unknowns in the three family oscillation scenario. Despite the anticipated success coming from the planned long baseline neutrino experiments in unraveling the leptonic mixing sector, there are two important unknowns which may remain obscure: the mixing angle Ξ13\theta_{13} and the CP-phase Ύ\delta. The measurement of these two parameters has led us to consider the combination of superbeams and neutrino factories as the key to unveil the neutrino oscillation picture.Comment: Invited brief review, 18 pages, 6 figure

    Study of the eightfold degeneracy with a standard ÎČ\beta-Beam and a Super-Beam facility

    Full text link
    The study of the eightfold degeneracy at a neutrino complex that includes a standard ÎČ\beta-Beam and a Super-Beam facility is presented for the first time in this paper. The scenario where the neutrinos are sent toward a Megaton water Cerenkov detector located at the Fr\'{e}jus laboratory (baseline 130 Km) is exploited. The performance in terms of sensitivity for measuring the continuous (Ξ13\theta_{13} and ÎŽ\delta) and discrete (sign[Δm232]{sign} [ \Delta m^2_{23} ] and sign[tan⁥(2Ξ23)]{sign} [\tan (2\theta_{23}) ]) oscillation parameters for the ÎČ\beta-Beam and Super-Beam alone, and for their combination has been studied. A brief review of the present uncertainties on the neutrino and antineutrino cross-sections is also reported and their impact on the discovery potential discussed

    Precision on leptonic mixing parameters at future neutrino oscillation experiments

    Get PDF
    We perform a comparison of the different future neutrino oscillation experiments based on the achievable precision in the determination of the fundamental parameters theta_{13} and the CP phase, delta, assuming that theta_{13} is in the range indicated by the recent Daya Bay measurement. We study the non-trivial dependence of the error on delta on its true value. When matter effects are small, the largest error is found at the points where CP violation is maximal, and the smallest at the CP conserving points. The situation is different when matter effects are sizable. As a result of this effect, the comparison of the physics reach of different experiments on the basis of the CP discovery potential, as usually done, can be misleading. We have compared various proposed super-beam, beta-beam and neutrino factory setups on the basis of the relative precision of theta_{13} and the error on delta. Neutrino factories, both high-energy or low-energy, outperform alternative beam technologies. An ultimate precision on theta_{13} below 3% and an error on delta of < 7^{\circ} at 1 sigma (1 d.o.f.) can be obtained at a neutrino factory.Comment: Minor changes, matches version accepted in JHEP. 30 pages, 9 figure

    A Beta Beam complex based on the machine upgrades for the LHC

    Get PDF
    The Beta Beam CERN design is based on the present LHC injection complex and its physics reach is mainly limited by the maximum rigidity of the SPS. In fact, some of the scenarios for the machine upgrades of the LHC, particularly the construction of a fast cycling 1 TeV injector (``Super-SPS''), are very synergic with the construction of a higher Îł\gamma Beta Beam. At the energies that can be reached by this machine, we demonstrate that dense calorimeters can already be used for the detection of Îœ\nu at the far location. Even at moderate masses (40 kton) as the ones imposed by the use of existing underground halls at Gran Sasso, the CP reach is very large for any value of Ξ13\theta_{13} that would provide evidence of Îœe\nu_e appearance at T2K or NOÎœ\nuA (Ξ13≄3∘\theta_{13}\geq 3^\circ). Exploitation of matter effects at the CERN to Gran Sasso distance provides sensitivity to the neutrino mass hierarchy in significant areas of the Ξ13−ή\theta_{13}-\delta plane

    Tribological performance of nylon composites with nanoadditives for self-lubrication purposes

    Get PDF
    A systematic study comparing the wear behaviour of composites with nylon matrix (PA66, PA46, PA12) and different nanoadditives and reinforcing additives (graphite, graphene, MoS2 and ZrO2) has been carried out in order to achieve a proper self-lubricant material for bearing cages. The wear characterisation was done using pin-on-disc tests, SEM and EDX analysis. The results show that better outcomes are obtained for composites based on PA12. The addition of ZrO2 offers negative values of wear due to the metallic particle transference from the counterface to the polymeric pin

    The Complementarity of Eastern and Western Hemisphere Long-Baseline Neutrino Oscillation Experiments

    Get PDF
    We present a general formalism for extracting information on the fundamental parameters associated with neutrino masses and mixings from two or more long baseline neutrino oscillation experiments. This formalism is then applied to the current most likely experiments using neutrino beams from the Japan Hadron Facility (JHF) and Fermilab's NuMI beamline. Different combinations of muon neutrino or muon anti-neutrino running are considered. To extract the type of neutrino mass hierarchy we make use of the matter effect. Contrary to naive expectation, we find that both beams using neutrinos is more suitable for determining the hierarchy provided that the neutrino energy divided by baseline (E/LE/L) for NuMI is smaller than or equal to that of JHF. Whereas to determine the small mixing angle, Ξ13\theta_{13}, and the CP or T violating phase Ύ\delta, one neutrino and the other anti-neutrino is most suitable. We make extensive use of bi-probability diagrams for both understanding and extracting the physics involved in such comparisons.Comment: 21 pages, Latex, 3 postscript figure

    Neutrino tomography - Learning about the Earth's interior using the propagation of neutrinos

    Full text link
    Because the propagation of neutrinos is affected by the presence of Earth matter, it opens new possibilities to probe the Earth's interior. Different approaches range from techniques based upon the interaction of high energy (above TeV) neutrinos with Earth matter, to methods using the MSW effect on the neutrino oscillations of low energy (MeV to GeV) neutrinos. In principle, neutrinos from many different sources (sun, atmosphere, supernovae, beams etc.) can be used. In this talk, we summarize and compare different approaches with an emphasis on more recent developments. In addition, we point out other geophysical aspects relevant for neutrino oscillations.Comment: 22 pages, 9 figures. Proceedings of ``Neutrino sciences 2005: Neutrino geophysics'', December 14-16, 2005, Honolulu, USA. Minor changes, some references added. Final version to appear in Earth, Moon, and Planet
    • 

    corecore