90 research outputs found

    Impact of the vertical emission profiles on background gas-phase pollution simulated from the EMEP emissions over Europe

    Get PDF
    International audienceFive one-year air quality simulations over a domain covering Europe have been performed using the CHIMERE chemistry transport model and the EMEP emission dataset for Europe. These five simulations differ only by the representation of the effective emission heights for anthropogenic emissions: one has been run using the EMEP standard recommendations, three others with vertical injection profiles derived from the EMEP recommendations but multiplying the injection height by 0.75, 0.50 and 0.25, respectively, while the last one uses vertical profiles derived from the recent literature. It is shown that using injection heights lower than the EMEP recommendations leads to significantly improved simulation of background SO2, NO2 and O3 concentrations when compared to the Airbase station measurements. © 2013 Author(s)

    Biofiltration vs conventional activated sludge plants: what about priority and emerging pollutants removal?

    Get PDF
    International audience: This paper compares the removal performances of two complete wastewater treatment plants (WWTPs) for all priority substances listed in the Water Framework Directive and additional compounds of interest including flame retardants, surfactants, pesticides, and personal care products (PCPs) (n = 104). First, primary treatments such as physicochemical lamellar settling (PCLS) and primary settling (PS) are compared. Similarly, biofiltration (BF) and conventional activated sludge (CAS) are then examined. Finally, the removal efficiency per unit of nitrogen removed of both WWTPs for micropollutants is discussed, as nitrogenous pollution treatment results in a special design of processes and operational conditions. For primary treatments, hydrophobic pollutants (log K ow > 4) are well removed (>70 %) for both systems despite high variations of removal. PCLS allows an obvious gain of about 20 % regarding pollutant removals, as a result of better suspended solids elimination and possible coagulant impact on soluble compounds. For biological treatments, variations of removal are much weaker, and the majority of pollutants are comparably removed within both systems. Hydrophobic and volatile compounds are well (>60 %) or very well removed (>80 %) by sorption and volatilization. Some readily biodegradable molecules are better removed by CAS, indicating a better biodegradation. A better sorption of pollutants on activated sludge could be also expected considering the differences of characteristics between a biofilm and flocs. Finally, comparison of global processes efficiency using removals of micropollutants load normalized to nitrogen shows that PCLS + BF is as efficient as PS + CAS despite a higher compactness and a shorter hydraulic retention time (HRT). Only some groups of pollutants seem better removed by PS + CAS like alkylphenols, flame retardants, or di-2-ethylhexyl phthalate (DEHP), thanks to better biodegradation and sorption resulting from HRT and biomass characteristics. For both processes, and out of the 68 molecules found in raw water, only half of them are still detected in the water discharged, most of the time close to their detection limit. However, some of them are detected at higher concentrations (>1 Όg/L and/or lower than environmental quality standards), which is problematic as they represent a threat for aquatic environment

    Overview of the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Forcing on the Mediterranean Climate (ChArMEx/ADRIMED) summer 2013 campaign

    Get PDF
    The Chemistry-Aerosol Mediterranean Experiment (ChArMEx; http://charmex.lsce.ipsl.fr) is a collaborative research program federating international activities to investigate Mediterranean regional chemistry-climate interactions. A special observing period (SOP-1a) including intensive airborne measurements was performed in the framework of the Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region (ADRIMED) project during the Mediterranean dry season over the western and central Mediterranean basins, with a focus on aerosol-radiation measurements and their modeling. The SOP-1a took place from 11 June to 5 July 2013. Airborne measurements were made by both the ATR-42 and F-20 French research aircraft operated from Sardinia (Italy) and instrumented for in situ and remote-sensing measurements, respectively, and by sounding and drifting balloons, launched in Minorca. The experimental setup also involved several ground-based measurement sites on islands including two ground-based reference stations in Corsica and Lampedusa and secondary monitoring sites in Minorca and Sicily. Additional measurements including lidar profiling were also performed on alert during aircraft operations at EARLINET/ACTRIS stations at Granada and Barcelona in Spain, and in southern Italy. Remote-sensing aerosol products from satellites (MSG/SEVIRI, MODIS) and from the AERONET/PHOTONS network were also used. Dedicated meso-scale and regional modeling experiments were performed in relation to this observational effort. We provide here an overview of the different surface and aircraft observations deployed during the ChArMEx/ADRIMED period and of associated modeling studies together with an analysis of the synoptic conditions that determined the aerosol emission and transport. Meteorological conditions observed during this campaign (moderate temperatures and southern flows) were not favorable to producing high levels of atmospheric pollutants or intense biomass burning events in the region. However, numerous mineral dust plumes were observed during the campaign, with the main sources located in Morocco, Algeria and Tunisia, leading to aerosol optical depth (AOD) values ranging between 0.2 and 0.6 (at 440 nm) over the western and central Mediterranean basins. One important point of this experiment concerns the direct observations of aerosol extinction onboard the ATR-42, using the CAPS system, showing local maxima reaching up to 150Mm(-1) within the dust plume. Non-negligible aerosol extinction (about 50Mm(-1)) has also been observed within the marine boundary layer (MBL). By combining the ATR- 42 extinction coefficient observations with absorption and scattering measurements, we performed a complete optical closure revealing excellent agreement with estimated optical properties. This additional information on extinction properties has allowed calculation of the dust single scattering albedo (SSA) with a high level of confidence over the western Mediterranean. Our results show a moderate variability from 0.90 to 1.00 (at 530 nm) for all flights studied compared to that reported in the literature on this optical parameter. Our results underline also a relatively low difference in SSA with values derived near dust sources. In parallel, active remote-sensing observations from the surface and onboard the F-20 aircraft suggest a complex vertical structure of particles and distinct aerosol layers with sea spray and pollution located within the MBL, and mineral dust and/or aged North American smoke particles located above (up to 6–7 km in altitude). Aircraft and balloon-borne observations allow one to investigate the vertical structure of the aerosol size distribution showing particles characterized by a large size (> 10 ÎŒm in diameter) within dust plumes. In most of cases, a coarse mode characterized by an effective diameter ranging between 5 and 10 ÎŒm, has been detected above the MBL. In terms of shortwave (SW) direct forcing, in situ surface and aircraft observations have been merged and used as inputs in 1-D radiative transfer codes for calculating the aerosol direct radiative forcing (DRF). Results show significant surface SW instantaneous forcing (up to (-90)Wm(-2) at noon). Aircraft observations provide also original estimates of the vertical structure of SW and LW radiative heating revealing significant instantaneous values of about 5 K per day in the solar spectrum (for a solar angle of 30 ) within the dust layer. Associated 3-D modeling studies from regional climate (RCM) and chemistry transport (CTM) models indicate a relatively good agreement for simulated AOD compared with observations from the AERONET/PHOTONS network and satellite data, especially for long-range dust transport. Calculations of the 3-D SW (clear-sky) surface DRF indicate an average of about -10 to -20Wm(-2) (for the whole period) over the Mediterranean Sea together with maxima (-50Wm(-2)) over northern Africa. The top of the atmosphere (TOA) DRF is shown to be highly variable within the domain, due to moderate absorbing properties of dust and changes in the surface albedo. Indeed, 3-D simulations indicate negative forcing over the Mediterranean Sea and Europe and positive forcing over northern Africa. Finally, a multiyear simulation, performed for the 2003 to 2009 period and including an ocean–atmosphere (O–A) coupling, underlines the impact of the aerosol direct radiative forcing on the sea surface temperature, O–A fluxes and the hydrological cycle over the Mediterranean.French National Research Agency (ANR) ANR-11-BS56-0006ADEMEFrench Atomic Energy CommissionCNRS-INSU and Meteo-France through the multidisciplinary programme MISTRALS (Mediterranean Integrated Studies aT Regional And Local Scales)CORSiCA project - Collectivite Territoriale de Corse through Fonds Europeen de Developpement Regional of the European Operational ProgramContrat de Plan Etat-RegionEuropean Union's Horizon 2020 research and innovation program 654169Spanish Ministry of Economy and Competitivity TEC2012-34575Science and Innovation UNPC10-4E-442European Union (EU)Department of Economy and Knowledge of the Catalan Autonomous Government SGR 583Andalusian Regional Government P12-RNM-2409Spanish Government CGL2013-45410-R 26225

    In situ functionalization of a cellulosic-based activated carbon with magnetic iron oxides for the removal of carbamazepine from wastewater

    Get PDF
    The main goal of this work was to produce an easily recoverable waste-based magnetic activated carbon (MAC) for an efficient removal of the antiepileptic pharmaceutical carbamazepine (CBZ) from wastewater. For this purpose, the synthesis procedure was optimized and a material (MAC4) providing immediate recuperation from solution, remarkable adsorptive performance and relevant properties (specific surface area of 551 m2 g-1 and saturation magnetization of 39.84 emu g-1) was selected for further CBZ kinetic and equilibrium adsorption studies. MAC4 presented fast CBZ adsorption rates and short equilibrium times (< 30-45 min) in both ultrapure water and wastewater. Equilibrium studies showed that MAC4 attained maximum adsorption capacities (qm) of 68 ± 4 mg g-1 in ultrapure water and 60 ± 3 mg g-1 in wastewater, suggesting no significant interference of the aqueous matrix in the adsorption process. Overall, this work provides evidence of potential application of a waste-based MAC in the tertiary treatment of wastewaters.publishe

    Aerosol indirect effects on summer precipitation in a regional climate model for the Euro-Mediterranean region

    No full text
    Aerosols affect atmospheric dynamics through their direct and semi-direct effects as well as through their effects on cloud microphysics (indirect effects). The present study investigates the indirect effects of aerosols on summer precipitation in the Euro-Mediterranean region, which is located at the crossroads of air masses carrying both natural and anthropogenic aerosols. While it is difficult to disentangle the indirect effects of aerosols from the direct and semi-direct effects in reality, a numerical sensitivity experiment is carried out using the Weather Research and Forecasting (WRF) model, which allows us to isolate indirect effects, all other effects being equal. The Mediterranean hydrological cycle has often been studied using regional climate model (RCM) simulations with parameterized convection, which is the approach we adopt in the present study. For this purpose, the Thompson aerosol-aware microphysics scheme is used in a pair of simulations run at 50 km resolution with extremely high and low aerosol concentrations. An additional pair of simulations has been performed at a convection-permitting resolution (3.3 km) to examine these effects without the use of parameterized convection. While the reduced radiative flux due to the direct effects of the aerosols is already known to reduce precipitation amounts, there is still no general agreement on the sign and magnitude of the aerosol indirect forcing effect on precipitation, with various processes competing with each other. Although some processes tend to enhance precipitation amounts, some others tend to reduce them. In these simulations, increased aerosol loads lead to weaker precipitation in the parameterized (low-resolution) configuration. The fact that a similar result is obtained for a selected area in the convection-permitting (high-resolution) configuration allows for physical interpretations. By examining the key variables in the model outputs, we propose a causal chain that links the aerosol effects on microphysics to their simulated effect on precipitation, essentially through reduction of the radiative heating of the surface and corresponding reductions of surface temperature, resulting in increased atmospheric stability in the presence of high aerosol loads

    Aerosol forecast over the Mediterranean area during July 2013 (ADRIMED/CHARMEX)

    No full text
    The ADRIMED (Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) project was dedicated to study the atmospheric composition during the summer 2013 in the European Mediterranean region. During its campaign experiment part, the WRF (Weather Research and Forecast Model) and CHIMERE models were used in the forecast mode in order to decide whether intensive observation periods should be triggered. Each day, a simulation of 4 days was performed, corresponding to (<i>D</i>-1) to (<i>D</i>+2) forecast leads. The goal of this study was to determine whether the model forecast spread is lower or greater than the model biases compared to observations. It is shown that the differences between observations and the model are always higher than those between the forecasts. Among all forcing types used in the chemistry-transport model, it is shown that the strong bias and other related low forecast scores are mainly due to the forecast accuracy of the wind speed, which is used both for the mineral dust emissions (a threshold process) and for the long-range transport of aerosol: the surface wind speed forecast spread can reach 50%, leading to mineral dust emission forecast spread of up to 30%. These variations are responsible for a moderate forecast spread of the surface PM<sub>10</sub> (a few percentage points) and for a large spread (more than 50%) in the mineral dust concentration at higher altitudes, leading to a mean AOD (aerosol optical depth) forecast spread of ±10%

    The CHIMERE v2020r1 online chemistry-transport model

    Get PDF
    International audienceThe CHIMERE chemistry-transport model v2020r1 replaces the v2017r5 version and provides numerous novelties. The most important of these is the online coupling with the Weather Research and Forecasting (WRF) meteorological model via the OASIS3 – Model Coupling Toolkit (MCT) external coupler. The model can still be used in offline mode; the online mode enables us to take into account the direct and indirect effects of aerosols on meteorology. This coupling also enables using the meteorological parameters with sub-hourly time steps. Some new parameterizations are implemented to increase the model performance and the user's choices: dimethyl sulfide (DMS) emissions, additional schemes for secondary organic aerosol (SOA) formation with volatility basis set (VBS) and H2O, improved schemes for mineral dust, biomass burning, and sea-salt emissions. The NOx emissions from lightning are added. The model also includes the possibility to use the operator-splitting integration technique. The subgrid-scale variability calculation of concentrations due to emission activity sectors is now possible. Finally, a new vertical advection scheme has been implemented, which is able to simulate more correctly long-range transport of thin pollutant plumes

    Source contributions to 2012 summertime aerosols in the Euro-Mediterranean region

    Get PDF
    In the Mediterranean area, aerosols may originate from anthropogenic or natural emissions (biogenic, mineral dust, fire and sea salt) before undergoing complex chemistry. In case of a huge pollution event, it is important to know whether European pollution limits are exceeded and, if so, whether the pollution is due to anthropogenic or natural sources. In this study, the relative contribution of emissions to surface PM<sub>10</sub>, surface PM<sub>2.5</sub> and total aerosol optical depth (AOD) is quantified. For Europe and the Mediterranean regions and during the summer of 2012, the WRF and CHIMERE models are used to perform a sensitivity analysis on a 50 km resolution domain (from −10° W to 40° E and from 30° N to 55° N): one simulation with all sources (reference) and all others with one source removed. The reference simulation is compared to data from the AirBase network and two ChArMEx stations, and from the AERONET network and the MODIS satellite instrument, to quantify the ability of the model to reproduce the observations. It is shown that the correlation ranges from 0.19 to 0.57 for surface particulate matter and from 0.35 to 0.75 for AOD. For the summer of 2012, the model shows that the region is mainly influenced by aerosols due to mineral dust and anthropogenic emissions (62 and 19 %, respectively, of total surface PM<sub>10</sub> and 17 and 52 % of total surface PM<sub>2.5</sub>). The western part of the Mediterranean is strongly influenced by mineral dust emissions (86 % for surface PM<sub>10</sub> and 44 % for PM<sub>2.5</sub>), while anthropogenic emissions dominate in the northern Mediterranean basin (up to 75 % for PM<sub>2.5</sub>). Fire emissions are more sporadic but may represent 20 % of surface PM<sub>2.5</sub>, on average, during the period near local sources. Sea salt mainly contributes for coastal sites (up to 29 %) and biogenic emissions mainly in central Europe (up to 20 %). <br><br> The same analysis was undertaken for the number of daily exceedances of the European Union limit of 50 ÎŒg m<sup>−3</sup> for PM<sub>10</sub> (over the stations), and for the number of daily exceedances of the WHO recommendation for PM<sub>2.5</sub> (25 ÎŒg m<sup>−3</sup>), over the western part of Europe and the central north. This number is generally overestimated by the model, particularly in the northern part of the domain, but exceedances are captured at the right time. Optimized contributions are computed with the observations, by subtracting the background bias at each station and the specific peak biases from the considered sources. These optimized contributions show that if natural sources such as mineral dust and fire events are particularly difficult to estimate, they were responsible exclusively for 35.9 and 0.7 %, respectively, of the exceedances for PM<sub>10</sub> during the summer of 2012. The PM<sub>25</sub> recommendation of 25 ÎŒg m<sup>−3</sup> is exceeded in 21.1 % of the cases because of anthropogenic sources exclusively and in 0.02 % because of fires. The other exceedances are induced by a mixed contribution between mainly mineral dust (49.5–67 % for PM<sub>10</sub> exceedance contributions, 4.4–13.8 % for PM<sub>2.5</sub>), anthropogenic sources (14.9–24.2 % and 46.3–80.6 %), biogenic sources (4.1–15.7 % and 12.6–30 %) and fires (2.2–7.2 % and 1.6–12.4 %)
    • 

    corecore