38 research outputs found

    Does a complex life cycle affect adaptation to environmental change? Genome-informed insights for characterizing selection across complex life cycle

    Get PDF
    Complex life cycles, in which discrete life stages of the same organism differ in form or function and often occupy different ecological niches, are common in nature. Because stages share the same genome, selective effects on one stage may have cascading consequences through the entire life cycle. Theoretical and empirical studies have not yet generated clear predictions about how life cycle complexity will influence patterns of adaptation in response to rapidly changing environments or tested theoretical predictions for fitness trade-offs (or lack thereof) across life stages. We discuss complex life cycle evolution and outline three hypotheses-ontogenetic decoupling, antagonistic ontogenetic pleiotropy and synergistic ontogenetic pleiotropy-for how selection may operate on organisms with complex life cycles. We suggest a within-generation experimental design that promises significant insight into composite selection across life cycle stages. As part of this design, we conducted simulations to determine the power needed to detect selection across a life cycle using a population genetic framework. This analysis demonstrated that recently published studies reporting within-generation selection were underpowered to detect small allele frequency changes (approx. 0.1). The power analysis indicates challenging but attainable sampling requirements for many systems, though plants and marine invertebrates with high fecundity are excellent systems for exploring how organisms with complex life cycles may adapt to climate change

    Genera of phytopathogenic fungi: GOPHY 3

    Get PDF
    This paper represents the third contribution in the Genera of Phytopathogenic Fungi (GOPHY) series. The series provides morphological descriptions, information about the pathology, distribution, hosts and disease symptoms for the treated genera, as well as primary and secondary DNA barcodes for the currently accepted species included in these. This third paper in the GOPHY series treats 21 genera of phytopathogenic fungi and their relatives including: Allophoma, Alternaria, Brunneosphaerella, Elsinoe, Exserohilum, Neosetophoma, Neostagonospora, Nothophoma, Parastagonospora, Phaeosphaeriopsis, Pleiocarpon, Pyrenophora, Ramichloridium, Seifertia, Seiridium, Septoriella, Setophoma, Stagonosporopsis, Stemphylium, Tubakia and Zasmidium. This study includes three new genera, 42 new species, 23 new combinations, four new names, and three typifications of older names

    A biologically relevant rapid quantification of physical and biological stress profiles on rocky shores.

    Get PDF
    Different combinations and intensities of physical (e.g. thermal) and biological (e.g.competition or predation) stress operate on organisms in different locations. Variation in these stresses can occur over small to medium spatial scales (cm to 10s m) in heterogeneous environments such as rocky shores, due to differences in sun and wave exposure, shore topography and/or recruitment. In this study we demonstrate how simple measurements can be taken that represent physical and biological stresses (stress profiles)in a given location. Using a bootstrapped principal component analysis, we identified significantly different stress profiles at four sites separated by only 10s to 100s of metres on the Shek O peninsula in Hong Kong. We then measured response to thermal stress, as determined by detachment temperature, in the limpet Cellana grata (which is known to be a sensitive indicator species to thermal stress) from each location. Significant differences in stress profile between locations were also seen in thermal stress tolerance of limpets from those locations. At locations where the major stresses are likely to be more physical or less biological in nature (e.g. southerly facing aspect or lower density of grazers), the mean detachment temperature was higher, whereas detachment temperature was lower at sites with more biological or less physical stress. This method is, therefore, able to determine biologically meaningful differences in stress profiles over small to medium spatial scales, and demonstrates that localised adaptation (i.e. post planktonic settlement) or acclimation of species may occur in response to these different stress profiles. The technique can be adapted to different environments and smaller or larger spatial scales as long as the stress experienced by the study species is relevant to these scales

    Combining niche-shift and population genetic analyses predicts rapid phenotypic evolution during invasion

    Get PDF
    Rapid evolution of non-native species can facilitate invasion success, but recent reviews indicate that such microevolution rarely yields expansion of the climatic niche in the introduced habitats. However, because some invasions originate from a geographically restricted portion of the native species range and its climatic niche, it is possible that the frequency, direction and magnitude of phenotypic evolution during invasion has been underestimated. We explored the utility of niche-shift analyses in the red seaweed Gracilaria vermiculophylla, which expanded its range from the northeastern coastline of Japan to North America, Europe and northwestern Africa within the last 100 years. A genetically-informed climatic niche shift analysis indicates that native source populations occur in colder and highly seasonal habitats, while most non-native populations typically occur in warmer, less seasonal habitats. This climatic niche expansion predicts that non-native populations evolved greater tolerance for elevated heat conditions relative to native source populations. We assayed 935 field-collected and 325 common-garden thalli from 40 locations and as predicted, non-native populations had greater tolerance for ecologically-relevant extreme heat (40°C) than did Japanese source populations. Non-native populations also had greater tolerance for cold and low-salinity stresses relative to source populations. The importance of local adaptation to warm temperatures during invasion was reinforced by evolution of parallel clines: populations from warmer, lower-latitude estuaries had greater heat tolerance than did populations from colder, higher-latitude estuaries in both Japan and eastern North America. We conclude that rapid evolution plays an important role in facilitating the invasion success of this and perhaps other non-native marine species. Genetically-informed ecological niche analyses readily generate clear predictions of phenotypic shifts during invasions, and may help to resolve debate over the frequency of niche conservatism versus rapid adaptation during invasion

    Ocean forests: breakthrough yields for macroalgae

    Get PDF
    The US Department of Energy Advanced Research Projects Agency - Energy (ARPA-E) MacroAlgae Research Inspiring Novel Energy Research (MARINER) program is encouraging technologies for the sustainable harvest of large funding research of macroalgae for biofuels at less than $80 per dry metric ton (DMT). The Ocean Forests team, led by the University of Southern Mississippi, is developing a complete managed ecosystem where nutrients are transformed and recycled. The team’s designs address major bottlenecks in profitability of offshore aquaculture systems including economical moored structures that can withstand storms, efficient planting, managing and harvesting systems, and sustainable nutrient supply. The work is inspired by Lapointe who reported yields of Gracilaria tikvahiae equivalent to 127 DMT per hectare per year (compared with standard aquaculture systems in the range of 20 to 40 DMT/ha/yr). This approach offers the potential for breakthrough yields for many macroalgae species. Moreover, mini-ecosystems in offshore waters create communities of macroalgae, shellfish, and penned finfish, supplemented by visiting free-range fish that can increase productivity, produce quality products, and create jobs and income for aquafarmers. Additional benefits include reduced disease in fish pens, cleaning contaminated coastal waters, and maximizing nutrient recycling. Cost projections for a successful, intensive, scaled system are competitive with current prices for fossil fuels

    Genotyping an Emiliania huxleyi (prymnesiophyceae) bloom event in the North Sea reveals evidence of asexual reproduction

    Get PDF
    Due to the unprecedented rate at which our climate is changing, the ultimate consequence for many species is likely to be either extinction or migration to an alternate habitat. Certain species might, however, evolve at a rate that could make them resilient to the effects of a rapidly changing environment. This scenario is most likely to apply to species that have large population sizes and rapid generation times, such that the genetic variation required for adaptive evolution can be readily supplied. Emiliania huxleyi (Lohm.) Hay and Mohler (Prymnesiophyceae) is likely to be such a species, as it is the most conspicuous extant calcareous phytoplankton species in our oceans with growth rates of 1 day−1. Here we report on a validated set of microsatellites, in conjunction with the coccolithophore morphology motif genetic marker, to genotype 93 clonal isolates collected from across the world. Of these, 52 came from a single bloom event in the North Sea collected on the D366 United Kingdom Ocean Acidification cruise in June–July 2011. There were 26 multilocus genotypes (MLGs) encountered only once in the North Sea bloom and 8 MLGs encountered twice or up to six times. Each of these repeated MLGs exhibited Psex values of less than 0.05, indicating each repeated MLG was the product of asexual reproduction and not separate meiotic events. In addition, we show that the two most polymorphic microsatellite loci, EHMS37 and P01E05, are reporting on regions likely undergoing rapid genetic drift during asexual reproduction. Despite the small sample size, there were many more repeated genotypes than previously reported for other bloom-forming phytoplankton species, including a previously genotyped E. huxleyi bloom event. This study challenges the current assumption that sexual reproduction predominates during bloom events. Whilst genetic diversity is high amongst extant populations of E. huxleyi, the root cause for this diversity and ultimate fate of these populations still requires further examination. Nonetheless, we show that certain CMM genotypes are found everywhere, while others appear to have a regional bias

    Cryptic Haploid Stages in the Life Cycle of Leathesia marina (Chordariaceae, Phaeophyceae) Under In Vitro Culture

    Get PDF
    We evaluated the life cycle of Leathesia marina through molecular analyses, culture studies, morphological observations, and ploidy measurements. Macroscopic sporophytes were collected from two localities in Atlantic Patagonia and were cultured under long-day (LD) and short-day (SD) conditions. Molecular identification of the microscopic and macroscopic phases was performed through the cox3 and rbcL genes and the phylogeny was assessed on the basis of single gene and concatenated datasets. Nuclear ploidy of each phase was estimated from the DNA contents of individual nuclei through epifluorescence microscopy and flow cytometry. Molecular results confirmed the identity of the Argentinian specimens as L. marina and revealed their conspecificity with L. marina from New Zealand, Germany, and Japan. The sporophytic macrothalli (2n) released mitospores from plurilocular sporangia, which developed into globular microthalli (2n), morphologically similar to the sporophytes but not in size, constituting a generation of small diploid thalli, with a mean fluorescent nuclei cross-sectional area of 3.21 ± 0.7 Όm2. The unilocular sporangia released meiospores that developed two morphologically different types of microthalli: erect branched microthalli (n) with a nuclear area of 1.48 ± 0.07 ”m2 that reproduces asexually, and prostrate branched microthalli (n) with a nuclear area of 1.24 ± 0.10 ”m2 that reproduces sexually. The prostrate microthalli released gametes in LD conditions, which merged and produced macroscopic thalli with a nuclear cross-sectional area of 3.45 ± 0.09 ”m2. Flow cytometry confirmed that the erect and prostrate microthalli were haploid and that the globular microthalli and macrothalli were diploid.Fil: Poza, Ailen Melisa. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto Argentino de OceanografĂ­a. Universidad Nacional del Sur. Instituto Argentino de OceanografĂ­a; ArgentinaFil: Santiañez, Wilfred John E.. Hokkaido University; JapĂłn. University of the Philippines Diliman; FilipinasFil: Croce, Maria Emilia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto Argentino de OceanografĂ­a. Universidad Nacional del Sur. Instituto Argentino de OceanografĂ­a; Argentina. Universidad Nacional del Sur. Departamento de BiologĂ­a, BioquĂ­mica y Farmacia; ArgentinaFil: Gauna, Maria Cecilia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto Argentino de OceanografĂ­a. Universidad Nacional del Sur. Instituto Argentino de OceanografĂ­a; Argentina. Universidad Nacional del Sur. Departamento de BiologĂ­a, BioquĂ­mica y Farmacia; ArgentinaFil: Kogame, Kazuhiro. Hokkaido University; JapĂłnFil: Parodi, Elisa Rosalia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto Argentino de OceanografĂ­a. Universidad Nacional del Sur. Instituto Argentino de OceanografĂ­a; Argentin

    Understanding the Mechanisms of Cell and Population Responses of Coccolithophores to Changing Ocean Chemistry

    No full text
    The calcifying coccolithophores have been proposed as a potentially vulnerable group in the face of increasing surface ocean CO2 levels. A full understanding of the likely responses of this group requires better mechanistic information on pH- and CO2-sensitive processes that underlie cell function at molecular, cellular and population levels. New findings on the mechanisms of pH homeostasis at a molecular and cellular level in both diatoms and coccolithophores are shaping our understanding of how these important groups may respond or acclimate to changing ocean pH. Critical parameters including intracellular pH homeostasis and cell surface pH will be considered. These studies are being carried out in parallel with genetic studies of natural oceanic populations to assess the natural genetic and physiological diversity that will underlie adaptation of populations in the long term
    corecore