56 research outputs found

    A network approach for managing ecosystem services and improving food and nutrition security on smallholder farms

    Get PDF
    Smallholder farmers are some of the poorest and most food insecure people on Earth. Their high nutritional and economic reliance on home-grown produce makes them particularly vulnerable to environmental stressors such as pollinator loss or climate change which threaten agricultural productivity. Improving smallholder agriculture in a way that is environmentally sustainable and resilient to climate change is a key challenge of the 21st century. Ecological intensification, whereby ecosystem services are managed to increase agricultural productivity, is a promising solution for smallholders. However, smallholder farms are complex socio-ecological systems with a range of social, ecological and environmental factors interacting to influence ecosystem service provisioning. To truly understand the functioning of a smallholder farm and identify the most effective management options to support household food and nutrition security, a holistic, systems-based understanding is required. In this paper, we propose a network approach to understand, visualise and model the complex interactions occurring among wild species, crops and people on smallholder farms. Specifically, we demonstrate how networks may be used to (a) identify wild species with a key role in supporting, delivering or increasing the resilience of an ecosystem service; (b) quantify the value of an ecosystem service in a way that is relevant to the food and nutrition security of smallholders; and (c) understand the social interactions that influence the management of shared ecosystem services. Using a case study based on data from rural Nepal, we demonstrate how this framework can be used to connect wild plants, pollinators and crops to key nutrients consumed by humans. This allows us to quantify the nutritional value of an ecosystem service and identify the wild plants and pollinators involved in its provision, as well as providing a framework to predict the effects of environmental change on human nutrition. Our framework identifies mechanistic links between ecosystem services and the nutrients consumed by smallholder farmers and highlights social factors that may influence the management of these services. Applying this framework to smallholder farms in a range of socio-ecological contexts may provide new, sustainable and equitable solutions to smallholder food and nutrition security. A free Plain Language Summary can be found within the Supporting Information of this article

    A network approach for managing ecosystem services and improving food and nutrition security on smallholder farms

    Get PDF
    1. Smallholder farmers are some of the poorest and most food insecure people on Earth. Their high nutritional and economic reliance on home--grown produce makes them particularly vulnerable to environmental stressors such as pollinator loss or climate change which threaten agricultural productivity. Improving smallholder agriculture in a way that is environmentally sustainable and resilient to climate change is a key challenge of the 21st century. 2. Ecological intensification, whereby ecosystem services are managed to increase agricultural productivity, is a promising solution for smallholders. However, smallholder farms are complex socio-ecological systems with a range of social, ecological and environmental factors interacting to influence ecosystem service provisioning. To truly understand the functioning of a smallholder farm and identify the most effective management options to support household food and nutrition security, a holistic, systems-based understanding is required. 3. In this paper, we propose a network approach to understand, visualise and model the complex interactions occurring among wild species, crops and people on smallholder farms. Specifically, we demonstrate how networks may be used to (a) identify wild species with a key role in supporting, delivering or increasing the resilience of an ecosystem service; (b) quantify the value of an ecosystem service in a way that is relevant to the food and nutrition security of smallholders; and (c) understand the social interactions that influence the management of shared ecosystem services. 4. Using a case study based on data from rural Nepal, we demonstrate how this framework can be used to connect wild plants, pollinators and crops to key nutrients consumed by humans. This allows us to quantify the nutritional value of an ecosystem service and identify the wild plants and pollinators involved in its provision, as well as providing a framework to predict the effects of environmental change on human nutrition. 5. Our framework identifies mechanistic links between ecosystem services and the nutrients consumed by smallholder farmers and highlights social factors that may influence the management of these services. Applying this framework to smallholder farms in a range of socio-ecological contexts may provide new, sustainable and equitable solutions to smallholder food and nutrition security.Peer reviewe

    Thermal stratification drives movement of a coastal apex predator

    Get PDF
    A characterization of the thermal ecology of fishes is needed to better understand changes in ecosystems and species distributions arising from global warming. The movement of wild animals during changing environmental conditions provides essential information to help predict the future thermal response of large marine predators. We used acoustic telemetry to monitor the vertical movement activity of the common dentex (Dentex dentex), a Mediterranean coastal predator, in relation to the oscillations of the seasonal thermocline during two summer periods in the Medes Islands marine reserve (NW Mediterranean Sea). During the summer stratification period, the common dentex presented a clear preference for the warm suprathermoclinal layer, and adjusted their vertical movements following the depth changes of the thermocline. The same preference was also observed during the night, when fish were less active. Due to this behaviour, we hypothesize that inter-annual thermal oscillations and the predicted lengthening of summer conditions will have a significant positive impact on the metabolic efficiency, activity levels, and population dynamics of this species, particularly in its northern limit of distribution. These changes in the dynamics of an ecosystem’s keystone predator might cascade down to lower trophic levels, potentially re-defining the coastal fish communities of the futureVersión del editor2,92

    Local flexibility in feeding behaviour and contrasting microhabitat use of an omnivore across latitudes

    Get PDF
    As the environment is getting warmer and species are redistributed, consumers can be forced to adjust their interactions with available prey, and this could have cascading effects within food webs. To better understand the capacity for foraging flexibility, our study aimed to determine the diet variability of an ectotherm omnivore inhabiting kelp forests, the sea urchin Echinus esculentus, along its entire latitudinal distribution in the northeast Atlantic. Using a combination of gut content and stable isotope analyses, we determined the diet and trophic position of sea urchins at sites in Portugal (42° N), France (49° N), southern Norway (63° N), and northern Norway (70° N), and related these results to the local abundance and distribution of putative food items. With mean estimated trophic levels ranging from 2.4 to 4.6, omnivory and diet varied substantially within and between sites but not across latitudes. Diet composition generally reflected prey availability within epiphyte or understorey assemblages, with local affinities demonstrating that the sea urchin adjusts its foraging to match the small-scale distribution of food items. A net “preference” for epiphytic food sources was found in northern Norway, where understorey food was limited compared to other regions. We conclude that diet change may occur in response to food source redistribution at multiple spatial scales (microhabitats, sites, regions). Across these scales, the way that key consumers alter their foraging in response to food availability can have important implication for food web dynamics and ecosystem functions along current and future environmental gradients

    High contributions of sea ice derived carbon in polar bear (Ursus maritimus) tissue.

    Get PDF
    Polar bears (Ursus maritimus) rely upon Arctic sea ice as a physical habitat. Consequently, conservation assessments of polar bears identify the ongoing reduction in sea ice to represent a significant threat to their survival. However, the additional role of sea ice as a potential, indirect, source of energy to bears has been overlooked. Here we used the highly branched isoprenoid lipid biomarker-based index (H-Print) approach in combination with quantitative fatty acid signature analysis to show that sympagic (sea ice-associated), rather than pelagic, carbon contributions dominated the marine component of polar bear diet (72-100%; 99% CI, n = 55), irrespective of differences in diet composition. The lowest mean estimates of sympagic carbon were found in Baffin Bay bears, which were also exposed to the most rapidly increasing open water season. Therefore, our data illustrate that for future Arctic ecosystems that are likely to be characterised by reduced sea ice cover, polar bears will not only be impacted by a change in their physical habitat, but also potentially in the supply of energy to the ecosystems upon which they depend. This data represents the first quantifiable baseline that is critical for the assessment of likely ongoing changes in energy supply to Arctic predators as we move into an increasingly uncertain future for polar ecosystems

    Kelps and environmental changes in Kongsfjorden: Stress perception and responses

    Get PDF
    corecore