1,030 research outputs found

    What is known about the health and living conditions of the indigenous people of northern Scandinavia, the Sami?

    Get PDF
    The Sami are the indigenous ethnic population of northern Scandinavia. Their health condition is poorly known, although the knowledge has improved over the last decade.The aim was to review the current information on mortality, diseases, and risk factor exposure in the Swedish Sami population.Health-related research on Sami cohorts published in scientific journals and anthologies was used to compare the health condition among the Sami and the majority non-Sami population. When relevant, data from the Sami populations in Swedish were compared with corresponding data from Norwegian and Finnish Sami populations.Life expectancy and mortality patterns of the Sami are similar to those of the majority population. Small differences in incidences of cancer and cardiovascular diseases have been reported. The traditional Sami lifestyle seems to contain elements that reduce the risk to develop cancer and cardiovascular diseases, e.g. physical activity, diet rich in antioxidants and unsaturated fatty acids, and a strong cultural identity. Reindeer herding is an important cultural activity among the Sami and is associated with high risks for accidents. Pain in the lower back, neck, shoulders, elbows, and hands are frequent among both men and women in reindeer-herding families. For men, these symptoms are related to high exposure to terrain vehicles, particularly snowmobile, whereas for women psychosocial risk factors seem to more important, e.g. poor social support, high effort, low reward, and high economical responsibilities.Although the health condition of the Sami population appears to be rather similar to that of the general Swedish population, a number of specific health problems have been identified, especially among the reindeer-herding Sami. Most of these problems have their origin in marginalization and poor knowledge of the reindeer husbandry and the Sami culture in the majority population. It is suggested that the most sustainable measure to improve the health among the reindeer-herding Sami would be to improve the conditions of the reindeer husbandry and the Sami culture

    The impact of iron limitation on the physiology of the Antarctic diatom Chaetoceros simplex

    Get PDF
    Iron availability strongly governs the growth of Southern Ocean phytoplankton. To investigate how iron limitation affects photosynthesis as well as the uptake of carbon and iron in the Antarctic diatom Chaetoceros simplex, a combination of chlorophyll a fluorescence measurements and radiotracer incubations in the presence and absence of chemical inhibitors was conducted. Iron limitation in C. simplex led to a decline in growth rates, photochemical efficiency and structural changes in photosystem II (PSII), including a reorganisation of photosynthetic units in PSII and an increase in size of the functional absorption cross section of PSII. Iron-limited cells further exhibited a reduced plastoquinone pool and decreased photosynthetic electron transport rate, while non-photochemical quenching and relative xanthophyll pigment content were strongly increased, suggesting a photoprotective response. Additionally, iron limitation resulted in a strong decline in carbon fixation and thus the particulate organic carbon quotas. Inhibitor studies demonstrated that, independent of the iron supply, carbon fixation was dependent on internal, but not on extracellular carbonic anhydrase activity. Orthovanadate more strongly inhibited iron uptake in iron-limited cells, indicating that P-type ATPase transporters are involved in iron uptake. The stronger reduction in iron uptake by ascorbate in iron-limited cells suggests that the re-oxidation of iron is required before it can be taken up and further supports the presence of a high-affinity iron transport pathway. The measured changes to photosystem architecture and shifts in carbon and iron uptake strategies in C. simplex as a result of iron limitation provide evidence for a complex interaction of these processes to balance the iron requirements for photosynthesis and carbon demand for sustained growth in iron-limited waters. © 2014 The Author(s)

    Full counting statistics for noninteracting fermions: Joint probability distributions

    Full text link
    The joint probability distribution in the full counting statistics (FCS) for noninteracting electrons is discussed for an arbitrary number of initially separate subsystems which are connected at t=0 and separated at a later time. A simple method to obtain the leading order long time contribution to the logarithm of the characteristic function is presented which simplifies earlier approaches. New explicit results for the determinant involving the scattering matrices are found. The joint probability distribution for two leads is discussed for Y-junctions and dots connected to four leads.Comment: 17 pages, 3 figure

    Full counting statistics for noninteracting fermions: Exact finite temperature results and generalized long time approximation

    Full text link
    Exact numerical results for the full counting statistics (FCS) of a one-dimensional tight-binding model of noninteracting electrons are presented at finite temperatures using an identity recently presented by Abanov and Ivanov. A similar idea is used to derive a new expression for the cumulant generating function for a system consisting of two quasi-one-dimensional leads connected by a quantum dot in the long time limit. This provides a generalization of the Levitov-Lesovik formula for such systems.Comment: 17 pages, 6 figures, extended introduction, additional comment

    Observation of the spin-orbit gap in bilayer graphene by one-dimensional ballistic transport

    Full text link
    We report on measurements of quantized conductance in gate-defined quantum point contacts in bilayer graphene that allow the observation of subband splittings due to spin-orbit coupling. The size of this splitting can be tuned from 40 to 80 μ\mueV by the displacement field. We assign this gate-tunable subband-splitting to a gap induced by spin-orbit coupling of Kane-Mele type, enhanced by proximity effects due to the substrate. We show that this spin-orbit coupling gives rise to a complex pattern in low perpendicular magnetic fields, increasing the Zeeman splitting in one valley and suppressing it in the other one. In addition, we observe the existence of a spin-polarized channel of 6 e2^2/h at high in-plane magnetic field and of signatures of interaction effects at the crossings of spin-split subbands of opposite spins at finite magnetic field.Comment: 5 pages, 4 figures, Supplement 6 figure

    Does the Normalized Difference Vegetation Index explain spatial and temporal variability in sap velocity in temperate forest ecosystems?

    Get PDF
    Understanding the link between vegetation characteristics and tree transpiration is a critical need to facilitate satellite-based transpiration estimation. Many studies use the Normalized Difference Vegetation Index (NDVI), a proxy for tree biophysical characteristics, to estimate evapotranspiration. In this study, we investigated the link between sap velocity and 30 m resolution Landsat-derived NDVI for 20 days during 2 contrasting precipitation years in a temperate deciduous forest catchment. Sap velocity was measured in the Attert catchment in Luxembourg in 25 plots of 20×20 m covering three geologies with sensors installed in two to four trees per plot. The results show that, spatially, sap velocity and NDVI were significantly positively correlated in April, i.e. NDVI successfully captured the pattern of sap velocity during the phase of green-up. After green-up, a significant negative correlation was found during half of the studied days. During a dry period, sap velocity was uncorrelated with NDVI but influenced by geology and aspect. In summary, in our study area, the correlation between sap velocity and NDVI was not constant, but varied with phenology and water availability. The same behaviour was found for the Enhanced Vegetation Index (EVI). This suggests that methods using NDVI or EVI to predict small-scale variability in (evapo)transpiration should be carefully applied, and that NDVI and EVI cannot be used to scale sap velocity to stand-level transpiration in temperate forest ecosystems

    Picturing and modeling catchments by representative hillslopes

    Get PDF
    This study explores the suitability of a single hillslope as a parsimonious representation of a catchment in a physically based model. We test this hypothesis by picturing two distinctly different catchments in perceptual models and translating these pictures into parametric setups of 2-D physically based hillslope models. The model parametrizations are based on a comprehensive field data set, expert knowledge and process-based reasoning. Evaluation against streamflow data highlights that both models predicted the annual pattern of streamflow generation as well as the hydrographs acceptably. However, a look beyond performance measures revealed deficiencies in streamflow simulations during the summer season and during individual rainfall–runoff events as well as a mismatch between observed and simulated soil water dynamics. Some of these shortcomings can be related to our perception of the systems and to the chosen hydrological model, while others point to limitations of the representative hillslope concept itself. Nevertheless, our results confirm that representative hillslope models are a suitable tool to assess the importance of different data sources as well as to challenge our perception of the dominant hydrological processes we want to represent therein. Consequently, these models are a promising step forward in the search for the optimal representation of catchments in physically based models

    Induced abortion on demand and birth rate in Sami-speaking municipalities and a control group in Finnmark, Norway

    Get PDF
    Objectives. The objective of this study was to analyze the birth and induced abortion on demand (IAD) rate among women in Sami-speaking communities and a control group in Finnmark County, Norway. Methods. The 6 northern municipalities included in the administration area of the Sami language law (study group) were matched with a control group of 9 municipalities. Population data (numbers, sex and age) were accessed from Statistics Norway. Data on birth rate and IAD during the time period 1999–2009 were derived from the Medical Birth Registry (MBR) of Norway. Data on number of women in fertile age (15–44 years) were obtained from Statistics Norway. Between 2001 and 2008, this age group was reduced by 12% (Sami) and 23% (controls), respectively. Results. Finnmark County has a high IAD rate and 1 in 4 pregnancies (spontaneous abortions excluded) ended in IAD in the study and control groups. The total fertility rate per woman was 1.94 and 1.87 births, respectively. There was no difference between groups with regard to the IAD/birth ratio (P=0.94) or general fertility rate GFR (P=0.82). Conclusions. Women in the Sami-majority area and a control group in Finnmark County experienced a similar frequency of IAD and fertility rate

    Top-transmon: hybrid superconducting qubit for parity-protected quantum computation

    Get PDF
    Qubits constructed from uncoupled Majorana fermions are protected from decoherence, but to perform a quantum computation this topological protection needs to be broken. Parity-protected quantum computation breaks the protection in a minimally invasive way, by coupling directly to the fermion parity of the system --- irrespective of any quasiparticle excitations. Here we propose to use a superconducting charge qubit in a transmission line resonator (a socalled transmon) to perform parity-protected rotations and read-out of a topological (top) qubit. The advantage over an earlier proposal using a flux qubit is that the coupling can be switched on and off with exponential accuracy, promising a reduced sensitivity to charge noise.Comment: 7 pages, 5 figure

    Modeling the climate impact of Southern Hemisphere ozone depletion:the importance of the ozone dataset

    Get PDF
    The ozone hole is an important driver of recent Southern Hemisphere (SH) climate change, and capturing these changes is a goal of climate modeling. Most climate models are driven by off-line ozone data sets. Previous studies have shown that there is a substantial range in estimates of SH ozone depletion, but the implications of this range have not been examined systematically. We use a climate model to evaluate the difference between using the ozone forcing (Stratospheric Processes and their Role in Climate (SPARC)) used by many Intergovernmental Panel on Climate Change Fifth Assessment Report (Coupled Model Intercomparison Project) models and one at the upper end of the observed depletion estimates (Binary Database of Profiles (BDBP)). In the stratosphere, we find that austral spring/summer polar cap cooling, geopotential height decreases, and zonal wind increases in the BDBP simulations are all doubled compared to the SPARC simulations, while tropospheric responses are 20–100% larger. These results are important for studies attempting to diagnose the climate fingerprints of ozone depletion
    corecore