1,344 research outputs found

    EZ: A Tool for Automatic Redshift Measurement

    Full text link
    We present EZ (Easy redshift), a tool we have developed within the VVDS project to help in redshift measurement from otpical spectra. EZ has been designed with large spectroscopic surveys in mind, and in its development particular care has been given to the reliability of the results obtained in an automatic and unsupervised mode. Nevertheless, the possibility of running it interactively has been preserved, and a graphical user interface for results inspection has been designed. EZ has been successfully used within the VVDS project, as well as the zCosmos one. In this paper we describe its architecture and the algorithms used, and evaluate its performances both on simulated and real data. EZ is an open source program, freely downloadable from http://cosmos.iasf-milano.inaf.it/pandora.Comment: accepted for publication in Publications of the Astronomical Society of the Pacifi

    Automated reliability assessment for spectroscopic redshift measurements

    Get PDF
    We present a new approach to automate the spectroscopic redshift reliability assessment based on machine learning (ML) and characteristics of the redshift probability density function (PDF). We propose to rephrase the spectroscopic redshift estimation into a Bayesian framework, in order to incorporate all sources of information and uncertainties related to the redshift estimation process, and produce a redshift posterior PDF that will be the starting-point for ML algorithms to provide an automated assessment of a redshift reliability. As a use case, public data from the VIMOS VLT Deep Survey is exploited to present and test this new methodology. We first tried to reproduce the existing reliability flags using supervised classification to describe different types of redshift PDFs, but due to the subjective definition of these flags, soon opted for a new homogeneous partitioning of the data into distinct clusters via unsupervised classification. After assessing the accuracy of the new clusters via resubstitution and test predictions, unlabelled data from preliminary mock simulations for the Euclid space mission are projected into this mapping to predict their redshift reliability labels.Comment: Submitted on 02 June 2017 (v1). Revised on 08 September 2017 (v2). Latest version 28 September 2017 (this version v3

    Deep near-infrared luminosity function of a cluster of galaxies at z=0.3

    Get PDF
    The deep near-infrared luminosity function of AC118, a cluster of galaxies at z=0.3, is presented. AC118 is a bimodal cluster, as evidenced both by our near-infrared images of lensed galaxies, by public X-ray Rosat images and by the spatial distribution of bright galaxies. Taking advantage of the extension and depth of our data, which sample an almost unexplored region in the depth vs. observed area diagram, we derive the luminosity function (LF), down to the dwarf regime (M*+5), computed in several cluster portions. The overall LF, computed on a 2.66 Mpc2 areas (H_0=50 km/s/Mpc), has an intermediate slope (alpha=-1.2). However, the LF parameters depend on the surveyed cluster region: the central concentration has 2.6^{+5.1}_{-1.7} times more bright galaxies and 5.3^{+7.2}_{-2.3} times less dwarfs per typical galaxy than the outer region, which includes galaxies at an average projected distance of ~580 kpc (errors are quoted at the 99.9 % confidence level). The LF in the secondary AC118 clump is intermediate between the central and outer one. In other words, the near-infrared AC118 LF steepens going from high to low density regions. At an average clustercentric distance of ~580 kpc, the AC118 LF is statistically indistinguishable from the LF of field galaxies at similar redshift, thus suggesting that the hostile cluster environment plays a minor role in shaping the LF at large clustercentric distances, while it strongly affects the LF at higher galaxy density.Comment: ApJ, in press. The whole paper with all high resolution images is available at http://www.na.astro.it/~andreon/listapub.htm

    Lyman-alpha absorption around nearby galaxies

    Full text link
    We have used STIS aboard HST to search for Lyman-alpha (Lya) absorption lines in the outer regions of eight nearby galaxies using background QSOs and AGN as probes. Lya lines are detected within a few hundred km/s of the systemic velocity of the galaxy in all cases. We conclude that a background line-of-sight which passes within 26-200 h-1 kpc of a foreground galaxy is likely to intercept low column density neutral hydrogen with log N(HI) >~ 13.0. The ubiquity of detections implies a covering factor of ~ 100% for low N(HI) gas around galaxies within 200 h-1 kpc. We discuss the difficulty in trying to associate individual absorption components with the selected galaxies and their neighbors, but show that by degrading our STIS data to lower resolutions, we are able to reproduce the anti-correlation of Lya equivalent width and impact parameter found at higher redshift. We also show that the equivalent width and column density of Lya complexes (when individual components are summed over ~ 1000 km/s) correlate well with a simple estimate of the volume density of galaxies brighter than M(B) = -17.5 at the same redshift as a Lya complex. We do not reject the hypothesis that the selected galaxies are directly responsible for the observed Lya lines, but our analysis indicates that absorption by clumpy intragroup gas is an equally likely explanation. (Abriged)Comment: Accepted for publication in Nov 20, 2002 issue of ApJ. Paper with all figures can be found at http://www.astro.princeton.edu/~dvb/lyapaper.ps (preferable). Minor typos fixe

    The VIMOS Ultra Deep Survey. Luminosity and stellar mass dependence of galaxy clustering at z~3

    Get PDF
    We present the study of the dependence of galaxy clustering on luminosity and stellar mass in the redshift range 2<<z<<3.5 using 3236 galaxies with robust spectroscopic redshifts from the VIMOS Ultra Deep Survey (VUDS). We measure the two-point real-space correlation function wp(rp)w_p(r_p) for four volume-limited stellar mass and four luminosity, MUV_{UV} absolute magnitude selected, sub-samples. We find that the scale dependent clustering amplitude r0r_0 significantly increases with increasing luminosity and stellar mass indicating a strong galaxy clustering dependence on these properties. This corresponds to a strong relative bias between these two sub-samples of Δ\Deltab/b^*=0.43. Fitting a 5-parameter HOD model we find that the most luminous and massive galaxies occupy the most massive dark matter haloes with \langleMh_h\rangle = 1012.30^{12.30} h1^{-1} M_{\odot}. Similar to the trends observed at lower redshift, the minimum halo mass Mmin_{min} depends on the luminosity and stellar mass of galaxies and grows from Mmin_{min} =109.73^{9.73} h1^{-1}M_{\odot} to Mmin_{min}=1011.58^{11.58} h1^{-1}M_{\odot} from the faintest to the brightest among our galaxy sample, respectively. We find the difference between these halo masses to be much more pronounced than is observed for local galaxies of similar properties. Moreover, at z~3, we observe that the masses at which a halo hosts, on average, one satellite and one central galaxy is M1_1\approx4Mmin_{min} over all luminosity ranges, significantly lower than observed at z~0 indicating that the halo satellite occupation increases with redshift. The luminosity and stellar mass dependence is also reflected in the measurements of the large scale galaxy bias, which we model as bg,HOD_{g,HOD}(>>L)=1.92+25.36(L/L^*)7.01^{7.01}. We conclude our study with measurements of the stellar-to-halo mass ratio (SHMR).Comment: 20 pages, 11 figures, A&A in press, v2. revised discussion in sec. 5.5, changed Fig. 4 and Fig. 11, added reference

    The history of mass assembly of faint red galaxies in 28 galaxy clusters since z=1.3

    Full text link
    We measure the relative evolution of the number of bright and faint (as faint as 0.05 L*) red galaxies in a sample of 28 clusters, of which 16 are at 0.50<= z<=1.27, all observed through a pair of filters bracketing the 4000 Angstrom break rest-frame. The abundance of red galaxies, relative to bright ones, is constant over all the studied redshift range, 0<z<1.3, and rules out a differential evolution between bright and faint red galaxies as large as claimed in some past works. Faint red galaxies are largely assembled and in place at z=1.3 and their deficit does not depend on cluster mass, parametrized by velocity dispersion or X-ray luminosity. Our analysis, with respect to previous one, samples a wider redshift range, minimizes systematics and put a more attention to statistical issues, keeping at the same time a large number of clusters.Comment: MNRAS, 386, 1045. Half a single sentence (in sec 4.4) change

    The Luminosity Function of Low-Redshift Abell Galaxy Clusters

    Full text link
    We present the results from a survey of 57 low-redshift Abell galaxy clusters to study the radial dependence of the luminosity function (LF). The dynamical radius of each cluster, r200, was estimated from the photometric measurement of cluster richness, Bgc. The shape of the LFs are found to correlate with radius such that the faint-end slope, alpha, is generally steeper on the cluster outskirts. The sum of two Schechter functions provides a more adequate fit to the composite LFs than a single Schechter function. LFs based on the selection of red and blue galaxies are bimodal in appearance. The red LFs are generally flat for -22 < M_Rc < -18, with a radius-dependent steepening of alpha for M_Rc > -18. The blue LFs contain a larger contribution from faint galaxies than the red LFs. The blue LFs have a rising faint-end component (alpha ~ -1.7) for M_Rc > -21, with a weaker dependence on radius than the red LFs. The dispersion of M* was determined to be 0.31 mag, which is comparable to the median measurement uncertainty of 0.38 mag. This suggests that the bright-end of the LF is universal in shape at the 0.3 mag level. We find that M* is not correlated with cluster richness when using a common dynamical radius. Also, we find that M* is weakly correlated with BM-type such that later BM-type clusters have a brighter M*. A correlation between M* and radius was found for the red and blue galaxies such that M* fades towards the cluster center.Comment: Accepted for publication in ApJ, 16 pages, 4 tables, 24 figure

    The extended epoch of galaxy formation: age dating of ~3600 galaxies with 2<z<6.5 in the VIMOS Ultra-Deep Survey

    Get PDF
    We aim at improving constraints on the epoch of galaxy formation by measuring the ages of 3597 galaxies with spectroscopic redshifts 2<z<6.5 in the VIMOS Ultra Deep Survey (VUDS). We derive ages and other physical parameters from the simultaneous fitting with the GOSSIP+ software of observed UV rest-frame spectra and photometric data from the u-band up to 4.5 microns using composite stellar population models. We conclude from extensive simulations that at z>2 the joint analysis of spectroscopy and photometry combined with restricted age possibilities when taking into account the age of the Universe substantially reduces systematic uncertainties and degeneracies in the age derivation. We find galaxy ages ranging from very young with a few tens of million years to substantially evolved with ages up to ~1.5-2 Gyr. The formation redshifts z_f derived from the measured ages indicate that galaxies may have started forming stars as early as z_f~15. We produce the formation redshift function (FzF), the number of galaxies per unit volume formed at a redshift z_f, and compare the FzF in increasing redshift bins finding a remarkably constant 'universal' FzF. The FzF is parametrized with (1+z)^\zeta, with \zeta~0.58+/-0.06, indicating a smooth 2 dex increase from z~15 to z~2. Remarkably this observed increase is of the same order as the observed rise in the star formation rate density (SFRD). The ratio of the SFRD with the FzF gives an average SFR per galaxy of ~7-17Msun/yr at z~4-6, in agreement with the measured SFR for galaxies at these redshifts. From the smooth rise in the FzF we infer that the period of galaxy formation extends from the highest possible redshifts that we can probe at z~15 down to redshifts z~2. This indicates that galaxy formation is a continuous process over cosmic time, with a higher number of galaxies forming at the peak in SFRD at z~2 than at earlier epochs. (Abridged)Comment: Submitted to A&A, 24 page

    The luminosity function of field galaxies

    Full text link
    Schmidt's method for construction of luminosity function of galaxies is generalized by taking into account the dependence of density of galaxies from the distance in the near Universe. The logarithmical luminosity function (LLF) of field galaxies depending on morphological type is constructed. We show that the LLF for all galaxies, and also separately for elliptical and lenticular galaxies can be presented by Schechter function in narrow area of absolute magnitudes. The LLF of spiral galaxies was presented by Schechter function for enough wide area of absolute magnitudes: . Spiral galaxies differ slightly by parameter . At transition from early spirals to the late spirals parameter in Schechter function is reduced. The reduction of mean luminosity of galaxies is observed at transition from elliptical galaxies to lenticular galaxies, to early spiral galaxies, and further, to late spiral galaxies, in a bright end, . The completeness and the average density of samples of galaxies of different morphological types are estimated. In the range the mean number density of all galaxies is equal 0.127 Mpc-3.Comment: 14 page, 8 figures, to appear in Astrophysic

    The VIPERS Multi-Lambda Survey. II. Diving with massive galaxies in 22 square degrees since z = 1.5

    Get PDF
    We investigate the evolution of the galaxy stellar mass function (SMF) and stellar mass density from redshift z=0.2 to z=1.5 of a KABK_{AB}<22-selected sample with highly reliable photometric redshifts and over an unprecedentedly large area. Our study is based on NIR observations carried out with WIRCam at CFHT over the footprint of the VIPERS spectroscopic survey and benefits from the high quality optical photometry from the CFHTLS and UV observations with the GALEX satellite. The accuracy of our photometric redshifts is σz\sigma_z < 0.03 and 0.05 for the bright (iABi_{AB}22.5) samples, respectively. The SMF is measured with ~760,000 galaxies down to KsK_s=22 and over an effective area of ~22.4 deg2^2, the latter of which drastically reduces the statistical uncertainties (i.e. Poissonian error & cosmic variance). We point out the importance of a careful control of the photometric calibration, whose impact becomes quickly dominant when statistical uncertainties are reduced, which will be a major issue for future generation of cosmological surveys with, e.g. EUCLID or LSST. By exploring the rest-frame (NUV-r) vs (r-KsK_s) color-color diagram separating star-forming and quiescent galaxies, (1) we find that the density of very massive log(M/MM_*/ M_{\odot}) > 11.5 galaxies is largely dominated by quiescent galaxies and increases by a factor 2 from z~1 to z~0.2, which allows for additional mass assembly via dry mergers, (2) we confirm a scenario where star formation activity is impeded above a stellar mass log(MSF/MM^*_{SF} / M_{\odot}) = 10.64±\pm0.01, a value that is found to be very stable at 0.2 < z < 1.5, (3) we discuss the existence of a main quenching channel that is followed by massive star-forming galaxies, and finally (4) we characterise another quenching mechanism required to explain the clear excess of low-mass quiescent galaxies observed at low redshift.Comment: 22 pages, 20 figures. Accepted for publication in A&A. Version to be publishe
    corecore