9 research outputs found

    Tau accumulation in astrocytes of the dentate gyrus induces neuronal dysfunction and memory deficits in Alzheimer’s disease

    No full text
    Alzheimer’s disease (AD) is characterized by the accumulation of the tau protein in neurons, neurodegeneration and memory loss. However, the role of non-neuronal cells in this chain of events remains unclear. In the present study, we found accumulation of tau in hilar astrocytes of the dentate gyrus of individuals with AD. In mice, the overexpression of 3R tau specifically in hilar astrocytes of the dentate gyrus altered mitochondrial dynamics and function. In turn, these changes led to a reduction of adult neurogenesis, parvalbumin-expressing neurons, inhibitory synapses and hilar gamma oscillations, which were accompanied by impaired spatial memory performances. Together, these results indicate that the loss of tau homeostasis in hilar astrocytes of the dentate gyrus is sufficient to induce AD-like symptoms, through the impairment of the neuronal network. These results are important for our understanding of disease mechanisms and underline the crucial role of astrocytes in hippocampal function

    Mis-splicing of Tau exon 10 in myotonic dystrophy type I is reproduced by overexpression of CELF2 but not by MBNL1 silencing

    Get PDF
    International audienceTau is the proteinaceous component of intraneuronal aggregates common to neurodegenerative diseases called Tauopathies, including myotonic dystrophy type I (DM1). In DM1, the presence of microtubule-associated protein Tau aggregates is associated with a mis-splicing of Tau. A toxic gain-of-function at the RNA level is a major etiological factor responsible for the mis-splicing of several transcripts in DM1. These are probably the consequence of a loss of MBNL1 function or gain of CELF1 splicing function. Whether these two dysfunctions occur together or separately, and whether all mis-splicing events in DM1 brain result from one or both of these dysfunctions remains unknown. Here, we analyzed the splicing of Tau exons 2 and 10 in the brain of DM1 patients. Two DM1 patients showed a mis-splicing of exon 10 whereas exon 2-inclusion was reduced in all DM1 patients. In order to determine the potential factors responsible for exon 10 mis-splicing, we studied the effect of the splicing factors MBNL1, CELF1, CELF2 and CELF4 or a dominant-negative CELF factor on Tau exon 10 splicing by ectopic expression or siRNA. Interestingly, the inclusion of Tau exon 10 is reduced by CELF2 whereas it is insensitive to the loss-of-function of MBNL1, CELF1 gain-of-function or a dominant-negative of CELF factor. Moreover, we observed an increased expression of CELF2 only in the brain of DM1 patients with a mis-splicing of exon 10. Taken together, our results indicate the occurrence of a mis-splicing event in DM1 that is neither induced by a loss of MBNL1 function nor a gain of CELF1 function, but is rather associated to CELF2 gain-of-function

    MBNL Sequestration by Toxic RNAs and RNA Misprocessing in the Myotonic Dystrophy Brain

    Get PDF
    For some neurological disorders, disease is primarily RNA mediated due to expression of non-coding microsatellite expansion RNAs (RNAexp). Toxicity is thought to result from enhanced binding of proteins to these expansions and depletion from their normal cellular targets. However, experimental evidence for this sequestration model is lacking. Here, we use HITS-CLIP and pre-mRNA processing analysis of human control versus myotonic dystrophy (DM) brains to provide compelling evidence for this RNA toxicity model. MBNL2 binds directly to DM repeat expansions in the brain, resulting in depletion from its normal RNA targets with downstream effects on alternative splicing and polyadenylation. Similar RNA processing defects were detected in Mbnl compound-knockout mice, highlighted by dysregulation of Mapt splicing and fetal tau isoform expression in adults. These results demonstrate that MBNL proteins are directly sequestered by RNAexp in the DM brain and introduce a powerful experimental tool to evaluate RNA-mediated toxicity in other expansion diseases

    GnRH replacement rescues cognition in Down syndrome.

    No full text
    At the present time, no viable treatment exists for cognitive and olfactory deficits in Down syndrome (DS). We show in a DS model (Ts65Dn mice) that these progressive nonreproductive neurological symptoms closely parallel a postpubertal decrease in hypothalamic as well as extrahypothalamic expression of a master molecule that controls reproduction-gonadotropin-releasing hormone (GnRH)-and appear related to an imbalance in a microRNA-gene network known to regulate GnRH neuron maturation together with altered hippocampal synaptic transmission. Epigenetic, cellular, chemogenetic, and pharmacological interventions that restore physiological GnRH levels abolish olfactory and cognitive defects in Ts65Dn mice, whereas pulsatile GnRH therapy improves cognition and brain connectivity in adult DS patients. GnRH thus plays a crucial role in olfaction and cognition, and pulsatile GnRH therapy holds promise to improve cognitive deficits in DS

    GnRH replacement rescues cognition in Down syndrome

    Get PDF
    At the present time, no viable treatment exists for cognitive and olfactory deficits in Down syndrome (DS). We show in a DS model (Ts65Dn mice) that these progressive nonreproductive neurological symptoms closely parallel a postpubertal decrease in hypothalamic as well as extrahypothalamic expression of a master molecule that controls reproduction—gonadotropin-releasing hormone (GnRH)—and appear related to an imbalance in a microRNA-gene network known to regulate GnRH neuron maturation together with altered hippocampal synaptic transmission. Epigenetic, cellular, chemogenetic, and pharmacological interventions that restore physiological GnRH levels abolish olfactory and cognitive defects in Ts65Dn mice, whereas pulsatile GnRH therapy improves cognition and brain connectivity in adult DS patients. GnRH thus plays a crucial role in olfaction and cognition, and pulsatile GnRH therapy holds promise to improve cognitive deficits in DS.</p
    corecore