11 research outputs found

    Loss of Caveolin-1 Accelerates Neurodegeneration and Aging

    Get PDF
    The aged brain exhibits a loss in gray matter and a decrease in spines and synaptic densities that may represent a sequela for neurodegenerative diseases such as Alzheimer's. Membrane/lipid rafts (MLR), discrete regions of the plasmalemma enriched in cholesterol, glycosphingolipids, and sphingomyelin, are essential for the development and stabilization of synapses. Caveolin-1 (Cav-1), a cholesterol binding protein organizes synaptic signaling components within MLR. It is unknown whether loss of synapses is dependent on an age-related loss of Cav-1 expression and whether this has implications for neurodegenerative diseases such as Alzheimer's disease.We analyzed brains from young (Yg, 3-6 months), middle age (Md, 12 months), aged (Ag, >18 months), and young Cav-1 KO mice and show that localization of PSD-95, NR2A, NR2B, TrkBR, AMPAR, and Cav-1 to MLR is decreased in aged hippocampi. Young Cav-1 KO mice showed signs of premature neuronal aging and degeneration. Hippocampi synaptosomes from Cav-1 KO mice showed reduced PSD-95, NR2A, NR2B, and Cav-1, an inability to be protected against cerebral ischemia-reperfusion injury compared to young WT mice, increased Aβ, P-Tau, and astrogliosis, decreased cerebrovascular volume compared to young WT mice. As with aged hippocampi, Cav-1 KO brains showed significantly reduced synapses. Neuron-targeted re-expression of Cav-1 in Cav-1 KO neurons in vitro decreased Aβ expression.Therefore, Cav-1 represents a novel control point for healthy neuronal aging and loss of Cav-1 represents a non-mutational model for Alzheimer's disease

    Clustering of surface NMDA receptors is mainly mediated by the C-terminus of GluN2A in cultured rat hippocampal neurons

    No full text
    N-methyl-D-aspartate receptors (NMDARs) containing different GluN2 subunits play distinct roles in synaptic plasticity. Such differences may not only be determined by the channel properties, but also by differential surface distribution and synaptic localization. In the present study, using a Cy3-conjugated Fab fragment of the GFP antibody to label surface-located GluN2 subunits tagged with GFP at the N-terminus, we observed the membrane distribution patterns of GluN2A- or GluN2B-containing NMDARs in cultured rat hippocampal neurons. We found that surface NMDARs containing GluN2A, but not those containing GluN2B, were inclined to cluster at DIV7. Swapping the carboxyl termini of the GluN2 subunits completely reversed these distribution patterns. In addition, surface NMDARs containing GluN2A were preferentially associated with PSD-95. Taken together, the results of our study suggest that the clustering distribution of GluN2A-containing NMDARs is determined by the GluN2A C-terminus, and its interaction with PSD-95 plays an important role in this process.open

    Spatiotemporal dynamics of nicotinic acetylcholine receptors and lipid platforms

    No full text
    Abstract: The relationships between neurotransmitter receptors and their membrane environment are complex, mutual (bidirectional) and physiologically important. Some of these relationships are established with subsets of the membrane lipid population, in the form of lipid platforms, lateral heterogeneities of the bilayer lipid having a dynamic chemical composition distinct from that of the bulk membrane. In addition to the equilibrium between the biosynthetic production, exocytic delivery and recycling of receptors on the one hand, and the endocytic internalization on the other, lateral diffusion, clustering and anchorage of receptors at the lipid platforms play key roles in determining the amount of active receptors at the synapse. Mobile receptors traffic between reservoir non-synaptic membranes and the synapse predominantly by thermally driven Brownian motion, and become immobilized at the perisynaptic region or the synapse proper by various mechanisms. These comprise: (a) clustering mediated by homotropic inter-molecular receptor-receptor associations; (b) heterotropic associations with non-receptor scaffolding proteins or the subjacent cytoskeletal meshwork, leading to diffusional “trapping”, and (c) protein-lipid interactions, particularly with the neutral lipid cholesterol. Preceded by a brief introduction on the currently used methods to study protein lateral mobility in membranes, this review assesses the contribution of some of these mechanisms to the supramolecular organization and dynamics of the paradigm neurotransmitter receptor of muscle and neuronal cells—the nicotinic acetylcholine receptor (nAChR). The translational mobility of nAChRs at these two cell surfaces differs in terms of diffusion coefficients and residence intervals at the synapse, which cover an ample range of time regimes. Neuronal α7 nAChRs exhibit diffusion coefficients similar to those of other neurotransmitter receptors and spend part of their lifetime confined to the perisynaptic region of glutamatergic (excitatory) and GABAergic (inhibitory) synapses; they may also be involved in the regulation of the dynamic equilibrium between excitation and inhibition in brain
    corecore