339 research outputs found

    Length Measurement of High-brightness Electron Beam thanks to the 3-Phase Method

    No full text
    ISBN 978-3-95450-132-8International audienceThe goal of 3-phase method is to determine the length of an electron beam without dedicated diagnostics by varying the measurement conditions of its energy spread, through a change in the RF phase of an accelerating structure. The originality here comes from the fact that it is applied on high-brightness electron beams of few MeV generated by RF photo-injectors. It allows testing the accuracy of 3-phase method, since the length to reconstruct is known as being that of the laser pulse generating the beam. It requires establishing the longitudinal transfer matrix of a RF photo-injector, which is difficult since the electron velocity vary from 0 to relativistic during its path*. The 3-phase method in RF photo-injector has been simulated by ASTRA and PARMELA codes, validating the principle of the method. First measurement has been done on PHIL accelerator at LAL, showing a good agreement with the expected length. I will then show results obtained at PITZ with a standing wave booster and a comparison with those coming from a Cerenkov detector. Finally, measurements at higher energy performed on the SOLEIL LINAC with travelling wave accelerating structures will be exposed

    Internet as an Instrument to Transmit Theoretical Knowledge

    Get PDF
    The problem of transmitting theoretical knowledge and the role of the Internet in it require the solution due to the existing modernization of theoretical knowledge transmission process. The objective of this research is to define the role of the Internet in transmitting theoretical knowledge as it is the extremely important resource of the modern society. According to the carried out analysis of the problem and its solution the information technology is not only the mean that accumulates the volumes of knowledge, but also the tool of its social use, forms of social activity by way of social and information technology. As a result, using method of the methodological analysis in combination with competency-based approach we revealed that the Internet as a diachronic way of transmitting knowledge and experience is characterized by a polyagentity and interdisciplinarity

    Titan's atmosphere as observed by Cassini/VIMS solar occultations: CH4_4, CO and evidence for C2_2H6_6 absorption

    Full text link
    We present an analysis of the VIMS solar occultations dataset, which allows us to extract vertically resolved information on the characteristics of Titan's atmosphere between 100-700 km with a characteristic vertical resolution of 10 km. After a series of data treatment procedures, 4 occultations out of 10 are retained. This sample covers different seasons and latitudes of Titan. The transmittances show clearly the evolution of the haze and detect the detached layer at 310 km in Sept. 2011 at mid-northern latitudes. Through the inversion of the transmission spectra with a line-by-line radiative transfer code we retrieve the vertical distribution of CH4_4 and CO mixing ratio. The two methane bands at 1.4 and 1.7 {\mu}m are always in good agreement and yield an average stratospheric abundance of 1.28±0.081.28\pm0.08%. This is significantly less than the value of 1.48% obtained by the GCMS/Huygens instrument. The analysis of the residual spectra after the inversion shows that there are additional absorptions which affect a great part of the VIMS wavelength range. We attribute many of these additional bands to gaseous ethane, whose near-infrared spectrum is not well modeled yet. Ethane contributes significantly to the strong absorption between 3.2-3.5 {\mu}m that was previously attributed only to C-H stretching bands from aerosols. Ethane bands may affect the surface windows too, especially at 2.7 {\mu}m. Other residual bands are generated by stretching modes of C-H, C-C and C-N bonds. In addition to the C-H stretch from aliphatic hydrocarbons at 3.4 {\mu}m, we detect a strong and narrow absorption at 3.28 {\mu}m which we tentatively attribute to the presence of PAHs in the stratosphere. C-C and C-N stretching bands are possibly present between 4.3-4.5 {\mu}m. Finally, we obtain the CO mixing ratio between 70-170 km. The average result of 46±1646\pm16 ppm is in good agreement with previous studies.Comment: 51 pages, 28 figure

    Seasonal Variations in Titan's Stratosphere Observed with Cassini/CIRS: Temperature, Trace Molecular Gas and Aerosol Mixing Ratio Profiles

    Get PDF
    Titan's northern spring equinox occurred in August 2009. General Circulation Models (e.g. Lebonnois et al., 2012) predict strong modifications of the global circulation in this period, with formation of two circulation cells instead of the pole-to-pole cell that occurred during northern winter. This winter single cell, which had its descending branch at the north pole, was at the origin of the enrichment of molecular abundances and high stratopause temperatures observed by Cassini/CIRS at high northern latitudes (e.g. Achterberg et al., 2011, Coustenis et al., 2010, Teanby et al., 2008, Vinatier et al., 2010). The predicted dynamical seasonal variations after the equinox have strong impact on the spatial distributions of trace gas, temperature and aerosol abundances. We will present here an analysis of CIRS limb-geometry datasets acquired in 2010 and 2011 that we used to monitor the seasonal evolution of the vertical profiles of temperature, molecular (C2H2, C2H6, HCN, ..) and aerosol abundances

    Negative ions formed in N<sub>2</sub>/CH<sub>4</sub>/Ar discharge – a simulation of Titan's atmosphere chemistry

    Get PDF
    The formation of negative ions produced in a negative point-to-plane corona discharge fed by a Ar/N2//CH4/ gas mixture has been studied using mass spectrometry. The measurements were carried out in flowing regime at ambient temperature and a reduced pressure of 460 mbar. The CN ? anion has been found to be the most dominant negative ion in the discharge and is believed to be the precursor of heavier negative ions such as C3/N ? and C5/N ? . The most likely pathway for the formation of such molecular anions is H-loss dissociative electron attachment to HCN, H3/CN and H5/CN formed in the discharge. These same anions have been detected in Titan's atmosphere and the present experiments may provide some novel insights into the chemical and physical mechanisms prevalent in Titan's atmosphere and hence assist in the interpretation of results from the Cassini Huygens space mission

    EVOLUTION OF THE STRATOSPHERIC TEMPERATURE AND CHEMICAL COMPOSITION OVER ONE TITANIAN YEAR

    Get PDF
    Since the Voyager 1 (V1) flyby in 1980, Titans exploration from space and the ground has been ongoing for more than a full revolution of Saturn around the Sun (one Titan year or 29.5 Earth years was completed in May 2010). In this study we search for temporal variations affecting Titans atmospheric thermal and chemical structure within that year. We process Cassini CIRS data taken during the Titan flybys from 2006-2013 and compare them to the 1980 V1IRIS spectra (re-analyzed here). We also consider data from Earth-based and -orbiting observatories (such as from the ISO, re-visited). When we compare the CIRS 2010 and the IRIS data we find limited inter-annual variations, below the 25 or35 levels for the lower and middle, or the high latitudes, respectively. A return to the 1980 stratospheric temperatures and abundances is generally achieved from 50degN to 50degS, indicative of the solar radiation being the dominating energy source at 10 AU, as for the Earth, as predicted by GCM and photochemical models. However, some exceptions exist among the most complex hydrocarbons (C4H2 and C3H4), especially in the North. In the Southern latitudes, since 2012, we see a trend for an increase of several trace gases, possibly indicative of a seasonal atmospheric reversal. At the Northern latitudes we found enhanced abundances around the period of the northern spring equinox in mid-2009 (as in Bampasidis et al. 2012), which subsequently decreased (from 2010-2012) returning to values similar to those found in the V1 epoch a Titanian year before

    MEASUREMENT OF LOW-CHARGED ELECTRON BEAM WITH A SCINTILLATOR SCREEN

    Get PDF
    Abstract Measuring electron beam charge lower than 1pC in an accelerator is very challenging since the traditional diagnostics, like Faraday Cup and ICT (Integrated Current Transformer), are limited in resolution to a few pC because of electronic noise. A way to simply measure lower charge would be then to use the linear relation, existing before saturation regime, between the incident charge on a scintillating screen and the total light intensity emitted in response by this screen. Measurements have been performed on PHIL accelerator at LAL, with charge lower than 200pC, with a LANEX screen located close to a Faraday Cup or an ICT. It shows a very good linear response of the screen down to the Faraday Cup and ICT resolution limits ( 3pC for the Faraday Cup and 10pC for the ICT) and therefore allows calibrating the screen for lower charge measurement with an estimated precision of 1% on the linear fit. A noise analysis enables estimating the ultimate screen resolution limit, which is actually dictated by the thermal noise of the CCD imaging the screen, around 10fC. Results of low charge measurements on PHIL will be shown and compared to those coming from a diamond detector installed on PHIL, in order to validate the measurement principle and cross-check both measurements. Such powerful and simple measurement may thereafter be used as a single-shot charge diagnostic for electron beam generated and accelerated by laser-plasma interaction and will be used in the context of the Dactomus projec

    Organic chemistry of NH<sub>3</sub> and HCN induced by an atmospheric abnormal glow discharge in N<sub>2</sub>-CH<sub>4</sub> mixtures

    Get PDF
    The formation of the chemical products produced in an atmospheric glow discharge fed by a N2-CH4 gas mixture has been studied using Fourier Transform InfraRed (FTIR) and Optical Emission Spectrometry (OES). The measurements were carried out in a flowing regime at ambient temperature and pressure with CH4 concentrations ranging from 0.5% to 2%. In the recorded emission spectra the lines of the second positive system CN system and the first negative system of N2 were found to be the most intensive but atomic Hα, Hβ, and C (247 nm) lines were also observed. FTIR-measurements revealed HCN and NH3 to be the major products of the plasma with traces of C2H2. These same molecules have been detected in Titan's atmosphere and the present experiments may provide some novel insights into the chemical and physical mechanisms prevalent in Titan's atmosphere with these smaller species believed to be the precursors of heavier organic species in Titan's atmosphere and on its surface
    corecore