391 research outputs found

    Adaptive plasticity in the mouse mandible

    Get PDF
    BACKGROUND: Plasticity, i.e. non-heritable morphological variation, enables organisms to modify the shape of their skeletal tissues in response to varying environmental stimuli. Plastic variation may also allow individuals to survive in the face of new environmental conditions, enabling the evolution of heritable adaptive traits. However, it is uncertain whether such a plastic response of morphology constitutes an evolutionary adaption itself. Here we investigate whether shape differences due to plastic bone remodelling have functionally advantageous biomechanical consequences in mouse mandibles. Shape characteristics of mandibles from two groups of inbred laboratory mice fed either rodent pellets or ground pellets mixed with jelly were assessed using geometric morphometrics and mechanical advantage measurements of jaw adductor musculature. RESULTS: Mandibles raised on diets with differing food consistency showed significant differences in shape, which in turn altered their biomechanical profile. Mice raised on a soft food diet show a reduction in mechanical advantage relative to mice of the same inbred strain raised on a typical hard food diet. Further, the soft food eaters showed lower levels of integration between jaw regions, particularly between the molar and angular region relative to hard food eaters. CONCLUSIONS: Bone remodelling in mouse mandibles allows for significant shifts in biomechanical ability. Food consistency significantly influences this process in an adaptive direction, as mice raised on hard food develop jaws better suited to handle hard foods. This remodelling also affects the organisation of the mandible, as mice raised on soft food appear to be released from developmental constraints showing less overall integration than those raised on hard foods, but with a shift of integration towards the most solicited regions of the mandible facing such a food, namely the incisors. Our results illustrate how environmentally driven plasticity can lead to adaptive functional changes that increase biomechanical efficiency of food processing in the face of an increased solicitation. In contrast, decreased demand in terms of food processing seems to release developmental interactions between jaw parts involved in mastication, and may generate new patterns of co-variation, possibly opening new directions to subsequent selection. Overall, our results emphasize that mandible shape and integration evolved as parts of a complex system including mechanical loading food resource utilization and possibly foraging behaviour

    Bending-wave Instability of a Vortex Ring in a Trapped Bose-Einstein Condensate

    Full text link
    Based on a velocity formula derived by matched asymptotic expansion, we investigate the dynamics of a circular vortex ring in an axisymmetric Bose-Einstein condensate in the Thomas-Fermi limit. The trajectory for an axisymmetrically placed and oriented vortex ring is entirely determined, revealing that the vortex ring generally precesses in condensate. The linear instability due to bending waves is investigated both numerically and analytically. General stability boundaries for various perturbed wavenumbers are computed. In particular, the excitation spectrum and the absolutely stable region for the static ring are analytically determined.Comment: 4 pages, 4 figure

    Energetics and Possible Formation and Decay Mechanisms of Vortices in Helium Nanodroplets

    Full text link
    The energy and angular momentum of both straight and curved vortex states of a helium nanodroplet are examined as a function of droplet size. For droplets in the size range of many experiments, it is found that during the pickup of heavy solutes, a significant fraction of events deposit sufficient energy and angular momentum to form a straight vortex line. Curved vortex lines exist down to nearly zero angular momentum and energy, and thus could in principle form in almost any collision. Further, the coalescence of smaller droplets during the cooling by expansion could also deposit sufficient angular momentum to form vortex lines. Despite their high energy, most vortices are predicted to be stable at the final temperature (0.38 K) of helium nanodroplets due to lack of decay channels that conserve both energy and angular momentum.Comment: 10 pages, 8 figures, RevTex 4, submitted to Phys. Rev.

    The Cerenkov effect revisited: from swimming ducks to zero modes in gravitational analogs

    Full text link
    We present an interdisciplinary review of the generalized Cerenkov emission of radiation from uniformly moving sources in the different contexts of classical electromagnetism, superfluid hydrodynamics, and classical hydrodynamics. The details of each specific physical systems enter our theory via the dispersion law of the excitations. A geometrical recipe to obtain the emission patterns in both real and wavevector space from the geometrical shape of the dispersion law is discussed and applied to a number of cases of current experimental interest. Some consequences of these emission processes onto the stability of condensed-matter analogs of gravitational systems are finally illustrated.Comment: Lecture Notes at the IX SIGRAV School on "Analogue Gravity" in Como, Italy from May 16th-21th, 201

    Watching dark solitons decay into vortex rings in a Bose-Einstein condensate

    Get PDF
    We have created spatial dark solitons in two-component Bose-Einstein condensates in which the soliton exists in one of the condensate components and the soliton nodal plane is filled with the second component. The filled solitons are stable for hundreds of milliseconds. The filling can be selectively removed, making the soliton more susceptible to dynamical instabilities. For a condensate in a spherically symmetric potential, these instabilities cause the dark soliton to decay into stable vortex rings. We have imaged the resulting vortex rings.Comment: 4 pages, 4 figure

    No association between islet cell antibodies and coxsackie B, mumps, rubella and cytomegalovirus antibodies in non-diabetic individuals aged 7–19 years

    Get PDF
    Viral antibodies were tested in a cohort of 44 isletcell antibody-positive individuals age 7–19 years, and 44 of their islet cell antibody-negative age and sex-matched classmates selected from a population study of 4208 pupils who had been screened for islet cell antibodies. Anti-coxsackie B1-5 IgM responses were detected in 14 of 44 (32%) of the islet cell antibody-positive subjects and in 7 of 44 (16%) control subjects. This difference did not reach the level of statistical significance. None of the islet cell antibody-positive subjects had specific IgM antibodies to mumps, rubella, or cytomegalovirus. There was also no increase in the prevalence or the mean titres of anti-mumps-IgG or IgA and anti-cytomegalovirus-IgG in islet cell antibody-positive subjects compared to control subjects. These results do not suggest any association between islet cell antibodies, and possibly insulitis, with recent mumps, rubella or cytomegalo virus infection. Further studies are required to clarify the relationship between islet cell antibodies and coxsackie B virus infections

    Open data and digital morphology

    Get PDF
    Over the past two decades, the development of methods for visualizing and analysing specimens digitally, in three and even four dimensions, has transformed the study of living and fossil organisms. However, the initial promise, that the widespread application of such methods would facilitate access to the underlying digital data, has not been fully achieved. The underlying datasets for many published studies are not readily or freely available, introducing a barrier to verification and reproducibility, and the reuse of data. There is no current agreement or policy on the amount and type of data that should be made available alongside studies that use, and in some cases are wholly reliant on, digital morphology. Here, we propose a set of recommendations for minimum standards and additional best practice for 3D digital data publication, and review the issues around data storage, management and accessibility

    A bird’s eye view: using circuit theory to study urban landscape connectivity for birds

    Get PDF
    Context Connectivity is fundamental to understanding how landscape form influences ecological function. However, uncertainties persist due to the difficulty and expense of gathering empirical data to drive or to validate connectivity models, especially in urban areas, where relationships are multifaceted and the habitat matrix cannot be considered to be binary. Objectives This research used circuit theory to model urban bird flows (i.e. ‘current’), and compared results to observed abundance. The aims were to explore the ability of this approach to predict wildlife flows and to test relationships between modelled connectivity and variation in abundance. Methods Circuitscape was used to model functional connectivity in Bedford, Luton/Dunstable, and Milton Keynes, UK, for great tits (Parus major) and blue tits (Cyanistes caeruleus), drawing parameters from published studies of woodland bird flows in urban environments. Model performance was then tested against observed abundance data. Results Modelled current showed a weak yet positive agreement with combined abundance for P. major and C. caeruleus. Weaker correlations were found for other woodland species, suggesting the approach may be expandable if re-parameterised. Conclusions Trees provide suitable habitat for urban woodland bird species, but their location in large, contiguous patches and corridors along barriers also facilitates connectivity networks throughout the urban matrix. Urban connectivity studies are well-served by the advantages of circuit theory approaches, and benefit from the empirical study of wildlife flows in these landscapes to parameterise this type of modelling more explicitly. Such results can prove informative and beneficial in designing urban green space and new developments

    Cranial biomechanics in basal urodeles: the Siberian salamander (Salamandrella keyserlingii) and its evolutionary and developmental implications

    Get PDF
    Developmental changes in salamander skulls, before and after metamorphosis, afect the feeding capabilities of these animals. How changes in cranial morphology and tissue properties afect the function of the skull are key to decipher the early evolutionary history of the crown-group of salamanders. Here, 3D cranial biomechanics of the adult Salamandrella keyserlingii were analyzed under diferent tissue properties and ossifcation sequences of the cranial skeleton. This helped unravel that: (a) Mechanical properties of tissues (as bone, cartilage or connective tissue) imply a consensus between the stifness required to perform a function versus the fxation (and displacement) required with the surrounding skeletal elements. (b) Changes on the ossifcation pattern, producing fontanelles as a result of bone loss or failure to ossify, represent a trend toward simplifcation potentially helping to distribute stress through the skull, but may also imply a major destabilization of the skull. (c) Bone loss may be originated due to biomechanical optimization and potential reduction of developmental costs. (d) Hynobiids are excellent models for biomechanical reconstruction of extinct early urodeles
    corecore