73 research outputs found
Effects of Short-term Soil Conditioning by Cheatgrass and Western Wheatgrass
The exotic grass Bromus tectorum (cheatgrass) is a ubiquitous invader in the western USA. Cheatgrass is a proficient competitor, frequently displacing native plants, forming monotypic stands and reducing biodiversity in ecosystems it invades. Our experiment tested whether short-term soil modification by cheatgrass and a predominant native grass, Pascopyrum smithii (western wheatgrass), affected subsequent growth of both species. We compared productivity of cheatgrass and western wheatgrass by harvesting aboveground biomass of plants grown in either cheatgrass- or western wheatgrass-conditioned soils over two simulated growing seasons. Results indicated that cheatgrass soils do not inhibit the productivity of the native grass, but do facilitate further growth of cheatgrass. Cheatgrass may alter soil characteristics, allowing it to invade other plant communities, but cheatgrass invaded soil did not inhibit growth of the native species studied here. This suggests that restoration with native species after control of cheatgrass may be possible
Case Studies of Fatigue Life Improvement Using Low Plasticity Burnishing in Gas Turbine Engine Applications
Surface enhancement technologies such as shot peening, laser shock peening (LSP), and low plasticity burnishing (LPB) can provide substantial fatigue life improvement. However, to be effective, the compressive residual stresses that increase fatigue strength must be retained in service. For successful integration into turbine design, the process must be affordable and compatible with the manufacturing environment. LPB provides thermally stable compression of comparable magnitude and even greater depth than other methods, and can be performed in conventional machine shop environments on CNC machine tools. LPB provides a means to extend the fatigue lives of both new and legacy aircraft engines and ground-based turbines. Improving fatigue performance by introducing deep stable layers of compressive residual stress avoids the generally cost prohibitive alternative of modifying either material or design. The X-ray diffraction based background studies of thermal and mechanical stability of surface enhancement techniques are briefly reviewed, demonstrating the importance of minimizing cold work. The LPB process, tooling, and control systems are described. An overview of current research programs conducted for engine OEMs and the military to apply LPB to a variety of engine and aging aircraft components are presented. Fatigue performance and residual stress data developed to date for several case studies are presented including: * The effect of LPB on the fatigue performance of the nickel based super alloy IN718, showing fatigue benefit of thermal stability at engine temperatures. * An order of magnitude improvement in damage tolerance of LPB processed Ti-6-4 fan blade leading edges. * Elimination of the fretting fatigue debit for Ti-6-4 with prior LPB. * Corrosion fatigue mitigation with LPB in Carpenter 450 steel. *Damage tolerance improvement in 17-4PH steel. Where appropriate, the performance of LPB is compared to conventional shot peening after exposure to engine operating temperatures
Response of a mixed grass prairie to an extreme precipitation event
Citation: Concilio, A. L., Prevey, J. S., Omasta, P., O'Connor, J., Nippert, J. B., & Seastedt, T. R. (2015). Response of a mixed grass prairie to an extreme precipitation event. Ecosphere, 6(10), 12. doi:10.1890/es15-00073.1Although much research has been conducted to measure vegetation response to directional shifts in climate change drivers, we know less about how plant communities will respond to extreme events. Here, we evaluate the response of a grassland community to an unprecedented 43 cm rainfall event that occurred in the Front Range of Colorado in September, 2013 using vegetation plots that had been monitored for response to simulated precipitation changes since 2011. This rain caused soils to stay at or above field capacity for multiple days, and much of the seed bank germinated following the early autumn event. Annual introduced grasses, especially cheatgrass (Bromus tectorum), and several introduced forbs demonstrated strong positive increases in cover the following growing season. Native cool season grasses and native forbs showed limited changes in absolute cover despite continued high soil water availability, while native warm season grasses increased in cover the following summer. Treatments that previously altered the amounts and seasonality of rainfall during the 2011-2013 interval showed legacy effects impacting cover responses of introduced species and warm-season native grasses. Resin bag estimates of inorganic nitrogen flux resulting from the event indicated twice as much nitrogen movement compared to any previous collections during the 2011-2013 interval. Nitrogen additions to a subset of plots made in spring of 2014 demonstrated that the relative cover of introduced species could be further increased with additional soil nitrogen. Collectively, these results support the contention that extreme precipitation events can favor species already benefiting from other environmental change drivers
Experimental warming differentially affects vegetative and reproductive phenology of tundra plants
Rapid climate warming is altering Arctic and alpine tundra ecosystem structure and function, including shifts in plant phenology. While the advancement of green up and flowering are well-documented, it remains unclear whether all phenophases, particularly those later in the season, will shift in unison or respond divergently to warming. Here, we present the largest synthesis to our knowledge of experimental warming effects on tundra plant phenology from the International Tundra Experiment. We examine the effect of warming on a suite of season-wide plant phenophases. Results challenge the expectation that all phenophases will advance in unison to warming. Instead, we find that experimental warming caused: (1) larger phenological shifts in reproductive versus vegetative phenophases and (2) advanced reproductive phenophases and green up but delayed leaf senescence which translated to a lengthening of the growing season by approximately 3%. Patterns were consistent across sites, plant species and over time. The advancement of reproductive seasons and lengthening of growing seasons may have significant consequences for trophic interactions and ecosystem function across the tundra
Developing common protocols to measure tundra herbivory across spatial scales
Understanding and predicting large-scale ecological responses to global environmental change requires comparative studies across geographic scales with coordinated efforts and standardized methodologies. We designed, applied, and assessed standardized protocols to measure tundra herbivory at three spatial scales: plot, site (habitat), and study area (landscape). The plot- and site-level protocols were tested in the field during summers 2014–2015 at 11 sites, nine of them consisting of warming experimental plots included in the International Tundra Experiment (ITEX). The study area protocols were assessed during 2014–2018 at 24 study areas across the Arctic. Our protocols provide comparable and easy to implement methods for assessing the intensity of invertebrate herbivory within ITEX plots and for characterizing vertebrate herbivore communities at larger spatial scales. We discuss methodological constraints and make recommendations for how these protocols can be used and how sampling effort can be optimized to obtain comparable estimates of herbivory, both at ITEX sites and at large landscape scales. The application of these protocols across the tundra biome will allow characterizing and comparing herbivore communities across tundra sites and at ecologically relevant spatial scales, providing an important step towards a better
understanding of tundra ecosystem responses to large-scale environmental change
Warming shortens flowering seasons of tundra plant communities
Advancing phenology is one of the most visible effects of climate change on plant communities, and has been especially pronounced in temperature-limited tundra ecosystems. However, phenological responses have been shown to differ greatly between species, with some species shifting phenology more than others. We analysed a database of 42,689 tundra plant phenological observations to show that warmer temperatures are leading to a contraction of community-level flowering seasons in tundra ecosystems due to a greater advancement in the flowering times of late-flowering species than early-flowering species. Shorter flowering seasons with a changing climate have the potential to alter trophic interactions in tundra ecosystems. Interestingly, these findings differ from those of warmer ecosystems, where early-flowering species have been found to be more sensitive to temperature change, suggesting that community-level phenological responses to warming can vary greatly between biomes
- …