456 research outputs found
Code dependencies of pre-supernova evolution and nucleosynthesis in massive stars: Evolution to the end of core helium burning
Massive stars are key sources of radiative, kinetic and chemical feedback in the Universe. Grids of massive star models computed by different groups each using their own codes, input physics choices and numerical approximations, however, lead to inconsistent results for the same stars. We use three of these 1D codes – genec, kepler and mesa – to compute non-rotating stellar models of 15, 20 and 25 M⊙ and compare their nucleosynthesis. We follow the evolution from the main sequence until the end of core helium burning. The genec and kepler models hold physics assumptions used in large grids of published models. The mesa code was set up to use convective core overshooting such that the CO core masses are consistent with those obtained by genec. For all models, full nucleosynthesis is computed using the NuGrid post-processing tool mppnp. We find that the surface abundances predicted by the models are in reasonable agreement. In the helium core, the standard deviation of the elemental overproduction factors for Fe to Mo is less than 30 per cent – smaller than the impact of the present nuclear physics uncertainties. For our three initial masses, the three stellar evolution codes yield consistent results. Differences in key properties of the models, e.g. helium and CO core masses and the time spent as a red supergiant, are traced back to the treatment of convection and, to a lesser extent, mass loss. The mixing processes in stars remain the key uncertainty in stellar modelling. Better constrained prescriptions are thus necessary to improve the predictive power of stellar evolution models
Convective–reactive nucleosynthesis of K, Sc, Cl and p-process isotopes in O–C shell mergers
© 2017 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. We address the deficiency of odd-Z elements P, Cl, K and Sc in Galactic chemical evolution models through an investigation of the nucleosynthesis of interacting convective O and C shells in massive stars. 3D hydrodynamic simulations of O-shell convection with moderate C-ingestion rates show no dramatic deviation from spherical symmetry. We derive a spherically averaged diffusion coefficient for 1D nucleosynthesis simulations, which show that such convective-reactive ingestion events can be a production site for P, Cl, K and Sc. An entrainment rate of 10-3M⊙s-1features overproduction factors OPs≈ 7. Full O-C shell mergers in our 1D stellar evolution massive star models have overproduction factors OPm> 1 dex but for such cases 3D hydrodynamic simulations suggest deviations from spherical symmetry. γ - process species can be produced with overproduction factors of OPm> 1 dex, for example, for130, 132Ba. Using the uncertain prediction of the 15M⊙, Z = 0.02 massive star model (OPm≈ 15) as representative for merger or entrainment convective-reactive events involving O- and C-burning shells, and assume that such events occur in more than 50 per cent of all stars, our chemical evolution models reproduce the observed Galactic trends of the odd-Z elements
Stellar neutron capture cross sections of ⁴¹K and ⁴⁵Sc
The neutron capture cross sections of light nuclei (
H ingestion into He-burning convection zones in super-AGB stellar models as a potential site for intermediate neutron-density nucleosynthesis
We investigate the evolution of super-AGB (SAGB) thermal pulse (TP) stars for a range of metallicities (Z) and explore the effect of convective boundary mixing (CBM). With decreasing metallicity and evolution along the TP phase, the He-shell flash and the third dredge-up (TDU) occur closer together in time. After some time (depending upon the CBM parametrization), efficient TDU begins while the pulse-driven convection zone (PDCZ) is still present, causing a convective exchange of material between the PDCZ and the convective envelope. This results in the ingestion of protons into the convective He-burning pulse. Even small amounts of CBM encourage the interaction of the convection zones leading to transport of protons from the convective envelope into the He layer. H-burning luminosities exceed 10⁹ (in some cases 10¹⁰) L⊙. We also calculate models of dredge-out in the most massive SAGB stars and show that the dredge-out phenomenon is another likely site of convective-reactive H-¹²C combustion. We discuss the substantial uncertainties of stellar evolution models under these conditions. Nevertheless, the simulations suggest that in the convective-reactive H-combustion regime of H ingestion the star may encounter conditions for the intermediate neutron capture process (i-process). We speculate that some CEMP-s/r stars could originate in i-process conditions in the H ingestion phases of low-Z SAGB stars. This scenario would however suggest a very low electron-capture supernova rate from SAGB stars. We also simulate potential outbursts triggered by such H ingestion events, present their light curves and briefly discuss their transient properties
A chemical signature from fast-rotating low-metallicity massive stars: ROA 276 in ω Centauri
© 2017. The American Astronomical Society. All rights reserved. We present a chemical abundance analysis of a metal-poor star, ROA 276, in the stellar system ω Centauri. We confirm that this star has an unusually high [Sr/Ba] abundance ratio. Additionally, ROA 276 exhibits remarkably high abundance ratios, [X/Fe] , for all elements from Cu to Mo along with normal abundance ratios for the elements from Ba to Pb. The chemical abundance pattern of ROA 276, relative to a primordial ω Cen star ROA 46, is best fit by a fast-rotating low-metallicity massive stellar model of 20 , [Fe/H] = -1.8, and an initial rotation 0.4 times the critical value; no other nucleosynthetic source can match the neutron-capture element distribution. ROA 276 arguably offers the most definitive proof to date that fast-rotating massive stars contributed to the production of heavy elements in the early universe
High-resolution abundance analysis of red giants in the globular cluster NGC 6522
The [Sr/Ba] and [Y/Ba] scatter observed in some galactic halo stars that are
very metal-poor stars and in a few individual stars of the oldest known Milky
Way globular cluster NGC 6522,have been interpreted as evidence of early
enrichment by massive fast-rotating stars (spinstars). Because NGC 6522 is a
bulge globular cluster, the suggestion was that not only the very-metal poor
halo stars, but also bulge stars at [Fe/H]~-1 could be used as probes of the
stellar nucleosynthesis signatures from the earlier generations of massive
stars, but at much higher metallicity. For the bulge the suggestions were based
on early spectra available for stars in NGC 6522, with a medium resolution of
R~22,000 and a moderate signal-to-noise ratio. The main purpose of this study
is to re-analyse the NGC 6522 stars previously reported using new
high-resolution (R~45,000) and high signal-to-noise spectra (S/N>100). We aim
at re-deriving their stellar parameters and elemental ratios, in particular the
abundances of the neutron-capture s-process-dominated elements such as Sr, Y,
Zr, La, and Ba, and of the r-element Eu. High-resolution spectra of four giants
belonging to the bulge globular cluster NGC 6522 were obtained at the 8m VLT
UT2-Kueyen telescope with the UVES spectrograph in FLAMES-UVESconfiguration.
The spectroscopic parameters were derived based on the excitation and
ionization equilibrium of \ion{Fe}{I} and \ion{Fe}{II}. Our analysis confirms a
metallicity [Fe/H] = -0.95+-0.15 for NGC 6522, and the overabundance of the
studied stars in Eu (with +~0.2 < [Eu/Fe] < +~0.4) and alpha-elements O and Mg.
The neutron-capture s-element-dominated Sr, Y, Zr, Ba, La now show less
pronounced variations from star to star. Enhancements are in the range 0.0 <
[Sr/Fe] < +0.4, +0.23 < [Y/Fe] < +0.43, 0.0 < [Zr/Fe] < +0.4, 0.0 < [La/Fe] <
+0.35,and 0.05 < [Ba/Fe] < +0.55.Comment: date of acceptation: 31/07/2014, in press, 24 pages, 19
figures,Astronomy & Astrophysics, 201
Nucleosynthesis in the Early Galaxy
Recent observations of r-process-enriched metal-poor star abundances reveal a
non-uniform abundance pattern for elements . Based on non-correlation
trends between elemental abundances as a function of Eu-richness in a large
sample of metal-poor stars, it is shown that the mixing of a consistent and
robust light element primary process (LEPP) and the r-process pattern found in
r-II metal-poor stars explains such apparent non-uniformity. Furthermore, we
derive the abundance pattern of the LEPP from observation and show that it is
consistent with a missing component in the solar abundances when using a recent
s-process model. As the astrophysical site of the LEPP is not known, we explore
the possibility of a neutron capture process within a site-independent
approach. It is suggested that scenarios with neutron densities
or in the range best
explain the observations.Comment: 28 pages, 7 Postscript figures. To be published in The Astrophysical
Journa
Stellar (n,γ) cross sections of ²³Na
The cross section of the ²³Na(n,γ)²⁴Na reaction has been measured via the activation method at the Karlsruhe 3.7 MV Van de Graaff accelerator. NaCl samples were exposed to quasistellar neutron spectra at kT = 5.1 and 25 keV produced via the ¹⁸O(p,n)¹⁸F and ⁷Li(p,n)⁷Be reactions, respectively. The derived capture cross sections (σ)kT=5keV = 9.1 ± 0.3mb and (σ)kT=25keV = 2.03 ± 0.05 mb are significantly lower than reported in literature. These results were used to substantially revise the radiative width of the first ²³Na resonance and to establish an improved set of Maxwellian average cross sections. The implications of the lower capture cross section for current models of s-process nucleosynthesis are discussed
Pulsed-field gel electrophoresis of restriction-digested genomic DNA and antimicrobial susceptibility of Xanthomonas maltophilia strains from Brazil, Switzerland and the USA
128Xe and 130Xe: Testing He-shell burning in AGB stars
The s-process branching at 128I has been investigated on the basis of new,
precise experimental (n,g) cross sections for the s-only isotopes 128Xe and
130Xe. This branching is unique, since it is essentially determined by the
temperature- and density-sensitive stellar decay rates of 128I and only
marginally affected by the specific stellar neutron flux. For this reason it
represents an important test for He-shell burning in AGB stars. The description
of the branching by means of the complex stellar scenario reveals a significant
sensitivity to the time scales for convection during He shell flashes, thus
providing constraints for this phenomenon. The s-process ratio 128Xe/130Xe
deduced from stellar models allows for a (9+-3)% p-process contribution to
solar 128Xe, in agreement with the Xe-S component found in meteoritic presolar
SiC grains.Comment: 24 pages, 9 figures, accepted for publication in Astophysical Journa
- …
