257 research outputs found
A Multi-Path Approach to Histology Volume Reconstruction
This paper presents a method for correcting erratic pairwise registrations when reconstructing a volume from 2D histology slices. Due to complex and unpredictable alterations of the content of histology images, a pairwise rigid registration between two adjacent slices may fail systematically. Conversely, a neighbouring registration, which potentially involves one of these two slices, will work. This grounds our approach: using correct spatial correspondences established through neighbouring registrations to account for direct failures. We propose to search the best alignment of every couple of adjacent slices from a finite set of transformations that involve neighbouring slices in a transitive fashion. Using the proposed method, we obtained reconstructed volumes with increased coherence compared to the classical pairwise approach, both in synthetic and real data
Corner-Based Geometric Calibration of Multi-focus Plenoptic Cameras
We propose a method for geometric calibration of multi-focus plenoptic cameras using raw images. Multi-focus plenoptic cameras feature several types of micro-lenses spatially aligned in front of the camera sensor to generate micro-images at different magnifications. This multi-lens arrangement provides computational-photography benefits but complicates calibration. Our methodology achieves the detection of the type of micro-lenses, the retrieval of their spatial arrangement, and the estimation of intrinsic and extrinsic camera parameters therefore fully characterising this specialised camera class. Motivated from classic pinhole camera calibration, our algorithm operates on a checker-board's corners, retrieved by a custom micro-image corner detector. This approach enables the introduction of a reprojection error that is used in a minimisation framework. Our algorithm compares favourably to the state-of-the-art, as demonstrated by controlled and freehand experiments, making it a first step towards accurate 3D reconstruction and Structure-from-Motion
230 Th normalization: new insights on an essential tool for quantifying sedimentary fluxes in the modern and quaternary ocean
© The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Costa, K. M., Hayes, C. T., Anderson, R. F., Pavia, F. J., Bausch, A., Deng, F., Dutay, J., Geibert, W., Heinze, C., Henderson, G., Hillaire-Marcel, C., Hoffmann, S., Jaccard, S. L., Jacobel, A. W., Kienast, S. S., Kipp, L., Lerner, P., Lippold, J., Lund, D., Marcantonio, F., McGee, D., McManus, J. F., Mekik, F., Middleton, J. L., Missiaen, L., Not, C., Pichat, S., Robinson, L. F., Rowland, G. H., Roy-Barman, M., Alessandro, Torfstein, A., Winckler, G., & Zhou, Y. 230 Th normalization: new insights on an essential tool for quantifying sedimentary fluxes in the modern and quaternary ocean. Paleoceanography and Paleoclimatology, 35(2), (2020): e2019PA003820, doi:10.1029/2019PA003820.230Th normalization is a valuable paleoceanographic tool for reconstructing high‐resolution sediment fluxes during the late Pleistocene (last ~500,000 years). As its application has expanded to ever more diverse marine environments, the nuances of 230Th systematics, with regard to particle type, particle size, lateral advective/diffusive redistribution, and other processes, have emerged. We synthesized over 1000 sedimentary records of 230Th from across the global ocean at two time slices, the late Holocene (0–5,000 years ago, or 0–5 ka) and the Last Glacial Maximum (18.5–23.5 ka), and investigated the spatial structure of 230Th‐normalized mass fluxes. On a global scale, sedimentary mass fluxes were significantly higher during the Last Glacial Maximum (1.79–2.17 g/cm2kyr, 95% confidence) relative to the Holocene (1.48–1.68 g/cm2kyr, 95% confidence). We then examined the potential confounding influences of boundary scavenging, nepheloid layers, hydrothermal scavenging, size‐dependent sediment fractionation, and carbonate dissolution on the efficacy of 230Th as a constant flux proxy. Anomalous 230Th behavior is sometimes observed proximal to hydrothermal ridges and in continental margins where high particle fluxes and steep continental slopes can lead to the combined effects of boundary scavenging and nepheloid interference. Notwithstanding these limitations, we found that 230Th normalization is a robust tool for determining sediment mass accumulation rates in the majority of pelagic marine settings (>1,000 m water depth).We thank Zanna Chase and one anonymous reviewer for valuable feedback. K. M. C. was supported by a Postdoctoral Scholarship at WHOI. L. M. acknowledges funding from the Australian Research Council grant DP180100048. The contribution of C. T. H., J. F. M., and R. F. A. were supported in part by the U.S. National Science Foundation (US‐NSF). G. H. R. was supported by the Natural Environment Research Council (grant NE/L002434/1). S. L. J. acknowledges support from the Swiss National Science Foundation (grants PP002P2_144811 and PP00P2_172915). This study was supported by the Past Global Changes (PAGES) project, which in turn received support from the Swiss Academy of Sciences and the US‐NSF. This work grew out of a 2018 workshop in Aix‐Marseille, France, funded by PAGES, GEOTRACES, SCOR, US‐NSF, Aix‐Marseille Université, and John Cantle Scientific. All data are publicly available as supporting information to this document and on the National Center for Environmental Information (NCEI) at https://www.ncdc.noaa.gov/paleo/study/28791
Radiocarbon Dating of Small-sized Foraminifer Samples: Insights into Marine sediment Mixing
Radiocarbon (14C) can be used to build absolute chronologies and reconstruct ocean ventilation over the last 40 ka. Sample size requirements have restricted 14C measurements in marine cores with low foraminifer content, impeding 14C-based studies focused on abrupt climate events. Recent developments have demonstrated that small-sized foraminifer samples can now be dated using a gas introduction system at the cost of a small decrease in precision. We explore the potential of gas measurements on benthic and planktonic foraminifers from core SU90-08 (43°03′1″N, 30°02′5″W, 3080 m). Gas measurements are accurate, reproducible within 2σ uncertainty and comparable to graphite measurements. Both techniques yield negative 14C benthic-planktonic (B-P) age-offsets after Heinrich event 1. We argue that negative B-P ages result from bioturbation and changes in foraminifer abundances, with the chance of negative B-P especially increased when the 14C age gradient between the deep and surface waters is decreased. Small-sized 14C measurements seem to capture the variance of the foraminifera age distribution, revealing the active mixing in those archives. Sediment deposition and mixing effects possibly pose a greater obstacle for past 14C-based dating and ocean ventilation reconstructions than the measurement precision itself, particularly in relatively low sedimentation rate settings
New Diabetic Treatment by Alleviation of Autonomic Nervous System Dysfunction Measured as Periosteal Pressure Sensitivity at Sternum Improves Empowerment, Treatment Satisfaction, and Self-Reported Health of People with Type 2 Diabetes: A Randomized Trial
Sofie Korsgaard Hecquet,1,2,* Søren Ballegaard,1,* Ebbe Eldrup,1,3 Christian Stevns Hansen,1,2 Tine Willum Hansen,2,3 Gitte Sommer Harboe,1 Peter Rossing,2,3 Caroline Sophie Hjelm Pichat,1 Torquil Watt,1 Finn Gyntelberg,4 Nanna Ørsted,1 Jens Oscar Faber1,3 1Department of Medicine, Endocrine Unit, Herlev Gentofte University Hospital, Herlev, Denmark; 2Clinical and Translational Research, Complications Research, Steno Diabetes Center Copenhagen, Herlev, Denmark; 3Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; 4The National Research Center for the Working Environment, Copenhagen, Denmark*These authors contributed equally to this workCorrespondence: Sofie Korsgaard Hecquet, Clinical and Translational Research, Complications Research, Steno Diabetes Center Copenhagen, Borgmester Ib Juuls vej 83, Herlev, Copenhagen, 2730, Denmark, Tel +45 30913413, Email [email protected]: Autonomic nervous system dysfunction (ANSD), for which presently no treatment exists, has a negative impact on prognosis in people with type 2 diabetes (T2D). Periosteal pressure sensitivity (PPS) on sternum may be a measure of autonomic nervous system dysfunction (ANSD). We tested if a non-pharmacological PPS-feedback-guided treatment program based on non-noxious sensory nerve stimulation, known to reduce PPS, changed empowerment, treatment satisfaction, and quality of life in people with T2D, compared to usual treatment.Patients and Methods: Analysis of secondary endpoints in a single center, two-armed, parallel-group, observer-blinded, randomized controlled trial of individuals with T2D. Participants were randomized to non-pharmacological intervention as an add-on to treatment as usual. Endpoints were evaluated by five validated questionnaires: Diabetes specific Empowerment (DES-SF), Diabetes Treatment Satisfaction (DTSQ), quality of life (QOL) (WHO-5), clinical stress signs (CSS), and self-reported health (SF-36). Sample size calculation was based on the primary endpoint HbA1c.Results: We included 144 participants, 71 allocated to active intervention and 73 to the control group. Active intervention compared to control revealed improved diabetes-specific empowerment (p = 0.004), DTSQ (p = 0.001), and SF-36 self-reported health (p=0.003) and tended to improve quality of life (WHO-5) (p = 0.056). The findings were clinically relevant with a Cohen’s effect size of 0.5 to 0.7.Conclusion: This non-pharmacological intervention, aiming to reduce PPS, and thus ANSD, improved diabetes-specific empowerment, treatment satisfaction, and self-reported health when compared to usual treatment. The proposed intervention may be a supplement to conventional treatment for T2D.Keywords: type 2 diabetes, empowerment, autonomic nervous system dysfunction, periosteal pressure sensitivit
Observation of the TeV gamma-ray source MGRO J1908+06 with ARGO-YBJ
The extended gamma ray source MGRO J1908+06, discovered by the Milagro air
shower detector in 2007, has been observed for about 4 years by the ARGO-YBJ
experiment at TeV energies, with a statistical significance of 6.2 standard
deviations. The peak of the signal is found at a position consistent with the
pulsar PSR J1907+0602. Parametrizing the source shape with a two-dimensional
Gauss function we estimate an extension \sigma = 0.49 \pm 0.22 degrees,
consistent with a previous measurement by the Cherenkov Array H.E.S.S.. The
observed energy spectrum is dN/dE = 6.1 \pm 1.4 \times 10^-13 (E/4 TeV)^{-2.54
\pm 0.36} photons cm^-2 s^-1 TeV^-1, in the energy range 1-20 TeV. The measured
gamma ray flux is consistent with the results of the Milagro detector, but is
2-3 times larger than the flux previously derived by H.E.S.S. at energies of a
few TeV. The continuity of the Milagro and ARGO-YBJ observations and the stable
excess rate observed by ARGO-YBJ along 4 years of data taking support the
identification of MGRO J1908+06 as the steady powerful TeV pulsar wind nebula
of PSR J1907+0602, with an integrated luminosity above 1 TeV about 1.8 times
the Crab Nebula luminosity.Comment: 6 pages, accepted for pubblication by ApJ. Replaced to correct the
author lis
\u3csup\u3e230\u3c/sup\u3eTh Normalization: New Insights on an Essential Tool for Quantifying Sedimentary Fluxes in the Modern and Quaternary Ocean
230Th normalization is a valuable paleoceanographic tool for reconstructing high‐resolution sediment fluxes during the late Pleistocene (last ~500,000 years). As its application has expanded to ever more diverse marine environments, the nuances of 230Th systematics, with regard to particle type, particle size, lateral advective/diffusive redistribution, and other processes, have emerged. We synthesized over 1000 sedimentary records of 230Th from across the global ocean at two time slices, the late Holocene (0–5,000 years ago, or 0–5 ka) and the Last Glacial Maximum (18.5–23.5 ka), and investigated the spatial structure of 230Th‐normalized mass fluxes. On a global scale, sedimentary mass fluxes were significantly higher during the Last Glacial Maximum (1.79–2.17 g/cm2kyr, 95% confidence) relative to the Holocene (1.48–1.68 g/cm2kyr, 95% confidence). We then examined the potential confounding influences of boundary scavenging, nepheloid layers, hydrothermal scavenging, size‐dependent sediment fractionation, and carbonate dissolution on the efficacy of 230Th as a constant flux proxy. Anomalous 230Th behavior is sometimes observed proximal to hydrothermal ridges and in continental margins where high particle fluxes and steep continental slopes can lead to the combined effects of boundary scavenging and nepheloid interference. Notwithstanding these limitations, we found that 230Th normalization is a robust tool for determining sediment mass accumulation rates in the majority of pelagic marine settings (\u3e1,000 m water depth)
No iron fertilization in the equatorial Pacific Ocean during the last ice age
The equatorial Pacific Ocean is one of the major high-nutrient, low-chlorophyll regions in the global ocean. In such regions, the consumption of the available macro-nutrients such as nitrate and phosphate is thought to be limited in part by the low abundance of the critical micro-nutrient iron1. Greater atmospheric dust deposition2 could have fertilized the equatorial Pacific with iron during the last ice age—the Last Glacial Period (LGP) but the effect of increased ice-age dust fluxes on primary productivity in the equatorial Pacific remains uncertain. Here we present meridional transects of dust (derived from the 232Th proxy), phytoplankton productivity (using opal, 231Pa/230Th and excess Ba), and the degree of nitrate consumption (using foraminifera-bound δ15N) from six cores in the central equatorial Pacific for the Holocene (0–10,000 years ago) and the LGP (17,000–27,000 years ago). We find that, although dust deposition in the central equatorial Pacific was two to three times greater in the LGP than in the Holocene, productivity was the same or lower, and the degree of nitrate consumption was the same. These biogeochemical findings suggest that the relatively greater ice-age dust fluxes were not large enough to provide substantial iron fertilization to the central equatorial Pacific. This may have been because the absolute rate of dust deposition in the LGP (although greater than the Holocene rate) was very low. The lower productivity coupled with unchanged nitrate consumption suggests that the subsurface major nutrient concentrations were lower in the central equatorial Pacific during the LGP. As these nutrients are today dominantly sourced from the Subantarctic Zone of the Southern Ocean, we propose that the central equatorial Pacific data are consistent with more nutrient consumption in the Subantarctic Zone, possibly owing to iron fertilization as a result of higher absolute dust fluxes in this region7,8. Thus, ice-age iron fertilization in the Subantarctic Zone would have ultimately worked to lower, not raise, equatorial Pacific productivity
The State Socialist Mortality Syndrome
Death rates for working-age men in European state socialist countries deviated from general improvements in survival observed in the rest of Europe during the 20th century. The magnitude of structural labor force changes across countries correlates with lagged increases in death rates for men in the working ages. This pattern is consistent with a hypothesis that hyper-development of heavy industry and stagnation (even contraction) of the service sector created anomic conditions leading to unhealthy lifestyles and self-destructive behavior among men moving from primary-sector to secondary-sector occupations. Occupational contrasts within countries similarly show concentration of rising male death rates among blue collar workers. Collapse of state socialist systems produced rapid corrections in labor force structure after 1990, again correlated with a fading of the state socialist mortality syndrome in following decades
- …