971 research outputs found

    KIC 4247791: A SB4 system with two eclipsing binaries (2EBs)

    Full text link
    KIC 4247791 is an eclipsing binary observed by the Kepler satellite mission. We wish to determine the nature of its components and in particular the origin of a shallow dip in its Kepler light curve that previous investigations have been unable to explain in a unique way. We analyze newly obtained high-resolution spectra of the star using synthetic spectra based on atmosphere models, derive the radial velocities of the stellar components from cross-correlation with a synthetic template, and calculate the orbital solution. We use the JKTEBOP program to model the Kepler light curve of KIC 4247791. We find KIC 4247791 to be a SB4 star. The radial velocity variations of its four components can be explained by two separate eclipsing binaries. In contradiction to previous photometric findings, we show that the observed composite spectrum as well as the derived masses of all four of its components correspond to spectral type F. The observed small dip in the light curve is not caused by a transit-like phenomenon but by the eclipses of the second binary system. We find evidence that KIC 4247791 might belong to the very rare hierarchical SB4 systems with two eclipsing binaries.Comment: 6 pages, 8 figures, 2 table

    Anisotropy of Polarized X-ray Emission from Molecules

    Full text link
    Strongly anisotropic, polarized Cl K-V x-ray emission from gas-phase CF3Cl has been observed following resonant excitation with a linearly polarized x-ray beam. Distinctively different angular distributions are observed for x-ray emission involving molecular orbitals of different symmetries. A classical model of the x-ray absorption-emission process accurately describes the observed radiation patterns

    Direct Determination of Molecular-orbital Symmetry of H2S Using Polarized X-ray Emission

    Full text link
    X-ray emission from the molecule H2S is strongly polarized following excitation of a sulfur K-shell electron to an unoccupied subthreshold molecular orbital with a polarized x-ray beam. Changes in the polarization of the emission spectrum are observed as the incident beam\u27s energy is swept across the subthreshold absorption resonance. The previously unresolved absorption resonance is shown experimentally to be primarily associated with a molecular orbital of b2 symmetry, but with a high-excitation-energy component due to an orbital with a1 symmetry. Satellite emission intensity is shown to depend on the primary photon energy and is therefore associated with multivacancy effects and not with contamination, as previously suggested

    KIC 8410637: a 408-day period eclipsing binary containing a pulsating red giant

    Get PDF
    Detached eclipsing binaries (dEBs) are ideal targets for accurate measurement of masses and radii of ther component stars. If at least one of the stars has evolved off the main sequence (MS), the masses and radii give a strict constraint on the age of the stars. Several dEBs containing a bright K giant and a fainter MS star have been discovered by the Kepler satellite. The mass and radius of a red giant (RG) star can also be derived from its asteroseismic signal. The parameters determined in this way depend on stellar models and may contain systematic errors. It is important to validate the asteroseismically determined mass and radius with independent methods. This can be done when stars are members of stellar clusters or members of dEBs. KIC 8410637 consists of an RG and an MS star. The aim is to derive accurate masses and radii for both components and provide the foundation for a strong test of the asteroseismic method and the accuracy of the deduced mass, radius and age. We analyse high-resolution spectra from three different spectrographs. We also calculate a fit to the Kepler light curve and use ground-based photometry to determine the flux ratios between the component stars in the BVRI passbands. We measured the masses and radii of the stars in the dEB, and the classical parameters Teff, log g and [Fe/H] from the spectra and ground-based photometry. The RG component of KIC 8410637 is most likely in the core helium-burning red clump phase of evolution and has an age and composition very similar to the stars in the open cluster NGC 6819. The mass of the RG in KIC 8410637 should therefore be similar to the mass of RGs in NGC 6819, thus lending support to the most up-to-date version of the asteroseismic scaling relations. This is the first direct measurement of both mass and radius for an RG to be compared with values for RGs from asteroseismic scaling relations.Comment: Accepted 20.6.2013 for publication in Astronomy and Astrophysic

    Detection of gravity modes in the massive binary V380 Cyg from Kepler spacebased photometry and high-resolution spectroscopy

    Get PDF
    We report the discovery of low-amplitude gravity-mode oscillations in the massive binary star V380 Cyg, from 180 d of Kepler custom-aperture space photometry and 5 months of high-resolution high signal-to-noise spectroscopy. The new data are of unprecedented quality and allowed to improve the orbital and fundamental parameters for this binary. The orbital solution was subtracted from the photometric data and led to the detection of periodic intrinsic variability with frequencies of which some are multiples of the orbital frequency and others are not. Spectral disentangling allowed the detection of line-profile variability in the primary. With our discovery of intrinsic variability interpreted as gravity mode oscillations, V380 Cyg becomes an important laboratory for future seismic tuning of the near-core physics in massive B-type stars.Comment: 5 pages, 4 figures, 2 tables. Accepted for publication in MNRAS Letter

    Structural Properties of Planar Graphs of Urban Street Patterns

    Full text link
    Recent theoretical and empirical studies have focused on the structural properties of complex relational networks in social, biological and technological systems. Here we study the basic properties of twenty 1-square-mile samples of street patterns of different world cities. Samples are represented by spatial (planar) graphs, i.e. valued graphs defined by metric rather than topologic distance and where street intersections are turned into nodes and streets into edges. We study the distribution of nodes in the 2-dimensional plane. We then evaluate the local properties of the graphs by measuring the meshedness coefficient and counting short cycles (of three, four and five edges), and the global properties by measuring global efficiency and cost. As normalization graphs, we consider both minimal spanning trees (MST) and greedy triangulations (GT) induced by the same spatial distribution of nodes. The results indicate that most of the cities have evolved into networks as efficienct as GT, although their cost is closer to the one of a tree. An analysis based on relative efficiency and cost is able to characterize different classes of cities.Comment: 7 pages, 3 figures, 3 table

    Low-Energy Nondipole Effects in Molecular Nitrogen Valence-Shell Photoionization

    Get PDF
    Observations are reported for the first time of significant nondipole effects in the photoionization of the outer-valence orbitals of diatomic molecules. Measured nondipole angular-distribution parameters for the 3sigmag, 1piu, and 2sigmau shells of N2 exhibit spectral variations with incident photon energies from thresholds to ~200 eV which are attributed via concomitant calculations to particular final-state symmetry waves arising from (E1)[direct-product](M1,E2) radiation-matter interactions first-order in photon momentum. Comparisons with previously reported K-edge studies in N2 verify linear scaling with photon momentum, accounting in part for the significantly enhanced nondipole behavior observed in inner-shell ionization at correspondingly higher momentum values in this molecule

    Absolute dimensions of eclipsing binaries. XXVIII. BK Pegasi and other F-type binaries: Prospects for calibration of convective core overshoot

    Full text link
    We present a detailed study of the F-type detached eclipsing binary BK Peg, based on new photometric and spectroscopic observations. The two components, which have evolved to the upper half of the main-sequence band, are quite different with masses and radii of (1.414 +/- 0.007 Msun, 1.988 +/- 0.008 Rsun) and (1.257 +/- 0.005 Msun, 1.474 +/- 0.017 Rsun), respectively. The 5.49 day period orbit of BK Peg is slightly eccentric (e = 0.053). The measured rotational velocities are 16.6 +/- 0.2 (primary) and 13.4 +/- 0.2 (secondary) km/s. For the secondary component this corresponds to (pseudo)synchronous rotation, whereas the primary component seems to rotate at a slightly lower rate. We derive an iron abundance of [Fe/H] =-0.12 +/- 0.07 and similar abundances for Si, Ca, Sc, Ti, Cr and Ni. Yonsei-Yale and Victoria-Regina evolutionary models for the observed metal abundance reproduce BK Peg at ages of 2.75 and 2.50 Gyr, respectively, but tend to predict a lower age for the more massive primary component than for the secondary. We find the same age trend for three other upper main-sequence systems in a sample of well studied eclipsing binaries with components in the 1.15-1.70 Msun range, where convective core overshoot is gradually ramped up in the models. We also find that the Yonsei-Yale models systematically predict higher ages than the Victoria-Regina models. The sample includes BW Aqr, and as a supplement we have determined a [Fe/H] abundance of -0.07 +/- 0.11 for this late F-type binary. We propose to use BK Peg, BW Aqr, and other well-studied 1.15-1.70 Msun eclipsing binaries to fine-tune convective core overshoot, diffusion, and possibly other ingredients of modern theoretical evolutionary models.Comment: Accepted for publication in Astronomy and Astrophysic

    Apollo asteroids (1566) Icarus and 2007 MK6: Icarus family members?

    Full text link
    Although it is more complicated to search for near-Earth object (NEO) families than main belt asteroid (MBA) families, since differential orbital evolution within a NEO family can cause current orbital elements to drastically differ from each other, we have found that Apollo asteroids (1566) Icarus and the newly discovered 2007 MK6 are almost certainly related. Specifically, their orbital evolutions show a similar profile, time shifted by only ~1000 yr, based on our time-lag theory. The dynamical relationship between Icarus and 2007 MK6 along with a possible dust band, the Taurid-Perseid meteor swarm, implies the first detection of an asteroidal NEO family, namely the "Icarus asteroid family".Comment: 11 pages, 1 figure, to appear on Astrophysical Journal Letters (journal info added
    • …
    corecore