91 research outputs found

    Spatial variability of snow chemistry in western Dronning Maud Land, Antarctica

    Get PDF
    During the austral summer of 1993-94 a number of 1-2 m deep snow pits were sampled in connection with firn-coring in western Dronning Maud Land, Antarctica. The traverse went from 800 to about 3000 m a.s.l. upon the high-altitude plateau. Profiles of cations (Na+, K+, Mg2+, Ca2+), anions (Cl−, NO3-, SO4 2- , CH3SO3 −) and stable oxygen isotopes (δ18O) from 11 snow pils are presented here. Close to the coast 2 m of snow accumulates in about 2-3 years, whilst at sites on the high-altitude plateau 2 m of snow accumulates in 10—14 years. The spatial variation in ion concentrations shows that the ions can be divided into two groups, one with sea-salt elements and methane sulfonate and the other with nitrate and sulfate. For the sca-salt elements and methane sulfonate the concentrations decrease with increasing altitude and increasing distance from the coast, as well as with decreasing temperature and decreasing accumulation rate. For nitrate and sulfate the concentrations are constant or increase with respect to these parameters. This pattern suggests that the sources for sca-salt elements and methane sulfonate are local, whereas the sources for nitrate and sulfate are a mixture of local and long-range transport

    Two-hundred-year Record of Biogenic Sulfur in a South Greenland Ice Core (20D)

    Get PDF
    The concentration of methanesulfonic acid (MSA) was determined in a shallow south central Greenland ice core(20D). This study provides a high-resolution record of the DMS-derived biogenic sulfur in Greenland precipitation over the past 200 years. The mean concentration of MSA is 3.30 ppb(σ = 2.38 ppb,n = 1134). The general trend of MSA is an increase from 3.01 to 4.10 ppb between 1767 and 1900, followed by a steady decrease to 2.34 ppb at the present time. This trend is in marked contrast to that of non-sea-salt sulfate (nss SO42-), which increases dramatically after 1900 due to the input of anthropogenic sulfur. The MSA fraction ((MSA/(MSA+ nss SO42-))* 100) ranges from a mean of 15% in preindustrial ice to less than 5% in recent ice. These MSA fraction suggest that approximately 5 to 40% of the sulfur in recent Greenland ice is of biological origin. It is suggested that there is a significant low-latitude component to the biogenic sulfur in the core and that variations in the MSA fraction reflect changes in the relative strengths of low- and high-latitude inputs. The data shown o evidence for a strong dependence of dimethyl sulfide(DMS) emissions on sea surface temperature during the last century. There is also no indication that the yield of MSA from DMS oxidation has been altered by increased NOx levels over the North Atlantic during this period

    A search in north Greenland for a new ice-core drill site

    Get PDF
    This is the published version. Copyright International Glaciological SocietyA new deep ice-core drilling site has been identified in north Greenland at 75.12 ° N, 42 .30 ° W, 316 km north-northwest (NNW) of the GRIP drill site on the summit of the ice sheet. The ice thickness here is 3085 m; the surface elevation is 2919 m. The North GRIP (NG RIP) site is identified so that ice of Eemian age (115- 130 ka BP, calendar years before present ) is located as far above bedrock as possible and so the thickness of the Eemian layer is as great as possible. An ice-flow model, similar to the one used to date the GRIP ice core, is used to simulate the flow along the NNW-trending ice ridge. Surface and bedrock elevations, surface accumulation-rate distribution and radio-echo sounding along the ridge have been used as model input. The surface accumulation rate drops from 0.23 mice equivalent year 1 at GRIP to 0.19 mice equivalent year- 1 50 km from GRIP. Over the following 300 km the accumulation is relatively constant, before it starts decreasing again further north. Ice thicknesses up to 3250 m bring the temperature of the basal ice up to the pressure-melting point 100- 250 km from GRIP. The NGRIP site is located 316 km from GRIP in a region where the bedrock is smooth and the accumulation rate is 0.19 m ice equivalent year 1 • The modeled basal ice here has always been a few degrees below the pressure-melting point. Internal radio-echo sounding horizons can be traceq between the GRIP and NGRIP sites, allowing us to date the ice down to 2300 m depth (52 ka BP ). An ice-flow model predicts that the Eemian-age ice will be located in the depth range 2710 - 2800 m, which is 285 m above the bedrock. This is 120 m further above the bedrock, and the thickness of the Eemian layer of ice is 20 m thicker, than at the GRIP ice-core ite

    Spatial Variability of Snow Chemistry in Western Dronning Maud Land, Antarctica

    Get PDF
    During the austral summer of 1993-94 a number of 1-2 m deep snow pits were sampled in connection with firn-coring in western Dronning Maud Land, Antarctica. The traverse went from 800 to about 3000 m a.s.l. upon the high-altitude plateau. Profiles of cations (Na+, K+, Mg2+, Ca2+), anions (CI-, NO3-, SO42-, CH3SO3-) and stable oxygen isotopes (δ18O) from II snow pits are presented here. Close to the coast 2 m of snow accumulates in about 2-3 years, whilst at sites on the high-altitude plateau 2 m of snow accumulates in 10-14 years. The spatial variation in ion concentrations shows that the ions can be divided into two groups, one with sea-salt elements and methane sulfonate and the other with nitrate and sulfate. For the sea-salt elements and methane sulfonate the concentrations decrease with increasing altitude and increasing distance from the coast, as well as with decreasing temperature and decreasing accumulation rate. For nitrate and sulfate the concentrations are constant or increase with respect to these parameters. This pattern suggests that the sources for sea-salt elements and methane sulfonate are local, whereas the sources for nitrate and sulfate are a mixture of local and long-range transport

    Oxygen isotope composition of surface snow collected along the traverse route from Zhongshan Station toward Dome A, Antarctica

    Get PDF
    Oxygen isotope composition of surface snow sampled in the austral summer of 1998/1999 along the traverse route from Zhongshan Station toward Dome A, Antarctica is measured with the conventional mass spectrometer technique. The results of measurement show that oxygen isotope composition of surface snow varies in a wide range from -22.51‰ to -50.67‰, and has a tendency that isotopic values gradually decrease with increase of distance from Zhongshan Station and altitude. Linear regression analysis indicates that there exists good correlation between oxygen isotope composition of surface snow and distance from Zhongshan Station, altitude and/or latitude, which actually reflects the close relation between stable isotope composition and air temperature

    RADIX: a minimal-resources rapid-access drilling system

    Get PDF
    Determining the expected age at a potential ice-core drilling site on a polar ice sheet generally depends on a combination of information from remote-sensing methods, estimates of current accumulation and modelling. This poses irreducible uncertainties in retrieving an undisturbed ice core of the desired age. Although recently perfected radar techniques will improve the picture of the ice sheet below future drilling sites, rapid prospective drillings could further increase the success of deep drilling projects. Here we design and explore a drilling system for a minimum-size rapid-access hole. The advantages of a small hole are the low demand for drilling fluid, low overall weight of the equipment, fast installing and de-installing and low costs. We show that, in theory, drilling of a 20mm hole to a depth of 3000m is possible in ~4 days. First concepts have been realized and verified in the field. Both the drill cuttings and the hole itself can be used to characterize the properties of the ice sheet and its potential to provide a trustworthy palaeo-record. A candidate drilling site could be explored in ~2 weeks, which would enable the characterization of several sites in one summer season

    Two-hundred-year record of biogenic sulfur in a south Greenland ice core (20D)

    Get PDF
    The concentration of methanesulfonic acid (MSA) was determined in a shallow south central Greenland ice core(20D). This study provides a high-resolution record of the DMS-derived biogenic sulfur in Greenland precipitation over the past 200 years. The mean concentration of MSA is 3.30 ppb(σ = 2.38 ppb,n = 1134). The general trend of MSA is an increase from 3.01 to 4.10 ppb between 1767 and 1900, followed by a steady decrease to 2.34 ppb at the present time. This trend is in marked contrast to that of non-sea-salt sulfate (nss SO42-), which increases dramatically after 1900 due to the input of anthropogenic sulfur. The MSA fraction ((MSA/(MSA+ nss SO42-))* 100) ranges from a mean of 15% in preindustrial ice to less than 5% in recent ice. These MSA fraction suggest that approximately 5 to 40% of the sulfur in recent Greenland ice is of biological origin. It is suggested that there is a significant low-latitude component to the biogenic sulfur in the core and that variations in the MSA fraction reflect changes in the relative strengths of low- and high-latitude inputs. The data shown o evidence for a strong dependence of dimethyl sulfide(DMS) emissions on sea surface temperature during the last century. There is also no indication that the yield of MSA from DMS oxidation has been altered by increased NOx levels over the North Atlantic during this period

    Shells and humans: molluscs and other coastal resources from the earliest human occupations at the Mesolithic shell midden of El Mazo (Asturias, Northern Spain)

    Get PDF
    Human populations exploited coastal areas with intensity during the Mesolithic in Atlantic Europe, resulting in the accumulation of large shell middens. Northern Spain is one of the most prolific regions, and especially the so-called Asturian area. Large accumulations of shellfish led some scholars to propose the existence of intensification in the exploitation of coastal resources in the region during the Mesolithic. In this paper, shell remains (molluscs, crustaceans and echinoderms) from stratigraphic units 114 and 115 (dated to the early Mesolithic c. 9 kys cal BP) at El Mazo cave (Asturias, northern Spain) were studied in order to establish resource exploitation patterns and environmental conditions. Species representation showed that limpets, top shells and sea urchins were preferentially exploited. One-millimetre mesh screens were crucial in establishing an accurate minimum number of individuals for sea urchins and to determine their importance in exploitation patterns. Environmental conditions deduced from shell assemblages indicated that temperate conditions prevailed at the time of the occupation and the morphology of the coastline was similar to today (rocky exposed shores). Information recovered relating to species representation, collection areas and shell biometry reflected some evidence of intensification (reduced shell size, collection in lower areas of exposed shores, no size selection in some units and species) in the exploitation of coastal resources through time. However, the results suggested the existence of changes in collection strategies and resource management, and periods of intense shell collection may have alternated with times of shell stock recovery throughout the Mesolithic.This research was performed as part of the project “The human response to the global climatic change in a littoral zone: the case of the transition to the Holocene in the Cantabrian coast (10,000–5000 cal BC) (HAR2010-22115-C02-01)” funded by the Spanish Ministry of Economy and Competitiveness. AGE was funded by the University of Cantabria through a predoctoral grant and IGZ was funded by the Spanish Ministry of Economy and Competitiveness through a Juan de la Cierva grant. We also would like to thank the University of Cantabria and the IIIPC for providing support, David Cuenca-Solana, Alejandro García Moreno and Lucia Agudo Pérez for their help. We also thank Jennifer Jones for correcting the English. Comments from two anonymous reviewers helped to improve the paper
    corecore