551 research outputs found

    Impact of 24-GeV proton irradiation on 0.13-mu-m CMOS devices

    Get PDF

    Facility for fast neutron irradiation tests of electronics at the ISIS spallation neutron source

    Get PDF
    The VESUVIO beam line at the ISIS spallation neutron source was set up for neutron irradiation tests in the neutron energy range above 10 MeV. The neutron flux and energy spectrum were shown, in benchmark activation measurements, to provide a neutron spectrum similar to the ambient one at sea level, but with an enhancement in intensity of a factor of 107. Such conditions are suitable for accelerated testing of electronic components, as was demonstrated here by measurements of soft error rates in recent technology field programable gate arrays

    Platelet-Induced Clumping of Plasmodium falciparum–Infected Erythrocytes from Malawian Patients with Cerebral Malaria—Possible Modulation In Vivo by Thrombocytopenia

    Get PDF
    Platelets may play a role in the pathogenesis of human cerebral malaria (CM), and they have been shown to induce clumping of Plasmodium falciparum–parasitized red blood cells (PRBCs) in vitro. Both thrombocytopenia and platelet-inducedPRBCclumping are associated with severe malaria and, especially, withCM.In the present study, we investigated the occurrence of the clumping phenomenon in patients with CM by isolating and coincubating their plasma and PRBCs ex vivo. Malawian children with CM all had low platelet counts, with the degree of thrombocytopenia directly proportional to the density of parasitemia. Plasma samples obtained from these patients subsequently induced weak PRBC clumping. When the assays were repeated, with the plasma platelet concentrations adjusted to within the physiological range considered to be normal, massive clumping occurred. The results of this study suggest that thrombocytopenia may, through reduction of platelet-mediated clumping of PRBCs, provide a protective mechanism for the host during CM

    Abnormal phenomena in a one-dimensional periodic structure containing left-handed materials

    Full text link
    The explicit dispersion equation for a one-dimensional periodic structure with alternative layers of left-handed material (LHM) and right-handed material (RHM) is given and analyzed. Some abnormal phenomena such as spurious modes with complex frequencies, discrete modes and photon tunnelling modes are observed in the band structure. The existence of spurious modes with complex frequencies is a common problem in the calculation of the band structure for such a photonic crystal. Physical explanation and significance are given for the discrete modes (with real values of wave number) and photon tunnelling propagation modes (with imaginary wave numbers in a limited region).Comment: 10 pages, 4 figure

    Possible effects on avionics induced by terrestrial gamma-ray flashes

    Get PDF
    Terrestrial gamma-ray flashes (TGFs) are impulsive (intrinsically sub-millisecond) events associated with lightning in powerful thunderstorms. TGFs turn out to be very powerful natural accelerators known to accelerate particles and generate radiation up to hundreds of MeV energies. The number ratio of TGFs over normal lightning has been measured in tropical regions to be near 10−4. We address in this Article the issue of the possible susceptibility of typical aircraft electronics exposed to TGF particle, gamma ray and neutron irradiation. We consider possible scenarios regarding the intensity, the duration, and geometry of TGFs influencing nearby aircraft, and study their effects on electronic equipment. We calculate, for different assumptions, the total dose and the dose-rate, and estimate single-event-effects. We find that in addition to the electromagnetic component (electrons/positrons, gamma rays) also secondary neutrons produced by gamma-ray photo production in the aircraft structure substantially contribute to single-event effects in critical semiconductors components. Depending on the physical characteristics and geometry, TGFs may deliver a large flux of neutrons within a few milliseconds in an aircraft. This flux is calculated to be orders of magnitude larger than the natural cosmic-ray background, and may constitute a serious hazard to aircraft electronic equipment. We present a series of numerical simulations supporting our conclusions. Our results suggest the necessity of dedicated measurement campaigns addressing the radiative and particle environment of aircraft near or within thunderstorms

    Multicenter research priorities in pediatric CMR: results of a collaborative wiki survey

    Get PDF
    Multicenter studies in pediatric cardiovascular magnetic resonance (CMR) improve statistical power and generalizability. However, a structured process for identifying important research topics has not been developed. We aimed to (1) develop a list of high priority knowledge gaps, and (2) pilot the use of a wiki survey to collect a large group of responses. Knowledge gaps were defined as areas that have been either unexplored or under-explored in the research literature. High priority goals were: (1) feasible and answerable from a multicenter research study, and (2) had potential for high impact on the field of pediatric CMR. Seed ideas were contributed by a working group and imported into a pairwise wiki survey format which allows for new ideas to be uploaded and voted upon (https://allourideas.org). Knowledge gaps were classified into 2 categories: ‘Clinical CMR Practice’ (16 ideas) and ‘Disease Specific Research’ (22 ideas). Over a 2-month period, 3,658 votes were cast by 96 users, and 2 new ideas were introduced. The 3 highest scoring sub-topics were myocardial disorders (9 ideas), translating new technology & techniques into clinical practice (7 ideas), and normal reference values (5 ideas). The highest priority gaps reflected strengths of CMR (e.g., myocardial tissue characterization; implementation of technologic advances into clinical practice), and deficiencies in pediatrics (e.g., data on normal reference values). The wiki survey format was effective and easy to implement, and could be used for future surveys

    Impact of plasma-wall interaction and exhaust on the EU-DEMO design

    Get PDF
    In the present work, the role of plasma facing components protection in driving the EU-DEMO design will be reviewed, focusing on steady-state and, especially, on transients. This work encompasses both the first wall (FW) as well as the divertor. In fact, while the ITER divertor heat removal technology has been adopted, the ITER FW concept has been shown in the past years to be inadequate for EU-DEMO. This is due to the higher foreseen irradiation damage level, which requires structural materials (like Eurofer) able to withstand more than 5 dpa of neutron damage. This solution, however, limits the tolerable steady-state heat flux to ~1 MW/m2, i.e. a factor 3–4 below the ITER specifications. For this reason, poloidally and toroidally discontinuous protection limiters are implemented in EU-DEMO. Their role consists in reducing the heat load on the FW due to charged particles, during steady state and, more importantly, during planned and off-normal plasma transients. Concerning the divertor configuration, EU-DEMO currently assumes an ITER-like, lower single null (LSN) divertor, with seeded impurities for the dissipation of the power. However, this concept has been shown by numerous simulations in the past years to be marginal during steady-state (where a detached divertor is necessary to maintain the heat flux below the technological limit and to avoid excessive erosion) and unable to withstand some relevant transients, such as large ELMs and accidental loss of detachment. Various concepts, deviating from the ITER design, are currently under investigation to mitigate such risks, for example in-vessel coils for strike point sweeping in case of reattachment, as well as alternative divertor configurations. Finally, a broader discussion on the impact of divertor protection on the overall machine design is presented

    Lenalidomide Maintenance and Measurable Residual Disease in a Real-World Multiple Myeloma Transplanted Population Receiving Different Treatment Strategies Guided by Access to Novel Drugs in Brazil

    Get PDF
    Despite recent advances in multiple myeloma (MM), the incorporation of novel agents and measurable residual disease (MRD) monitoring in low-income countries remains a challenge. Although lenalidomide maintenance (M-Len) after autologous stem cell transplantation (ASCT) has been associated with improved outcomes and MRD has refined the prognosis of complete response (CR) cases, until now, there have been no data on the benefits of these approaches in Latin America. Here, we evaluate the benefits of M-Len and MRD using next-generation flow cytometry (NGF-MRD) at Day + 100 post-ASCT (n = 53). After ASCT, responses were evaluated based on the International Myeloma Working Group criteria and NGF-MRD. MRD was positive in 60% of patients with a median progression-free survival (PFS) of 31 months vs. not reached (NR) for MRD-negative cases (p = 0.05). The patients who received M-Len continuously had a significantly better PFS and overall survival (OS) than those without M-Len (median PFS: NR vs. 29 months, p = 0.007), with progression in 11% vs. 54% of cases after a median follow-up of 34 months, respectively. In a multivariate analysis, MRD status and M-Len therapy emerged as independent predictors of PFS (median PFS of M-Len/MRD− vs. no M-Len/MRD+ of NR vs. 35 months, respectively; p = 0.01). In summary, M-Len was associated with improved survival outcomes in our real-world MM cohort in Brazil, with MRD emerging as a useful reproducible tool to identify patients at an earlier risk of relapse. The inequity in drug access remains a hurdle in countries with financial constraints, with a negative impact on MM survival.This work was supported by from Coordenação de Aperfeiçomento de Pessoal de Nível Superior—Brazil (CAPES) Finance code 001-8888.331795/2010-01; Programa de Oncobiologia 001/2017 and 004/2017; Centro Investigación Biomédica em Red—Cáncer (CIBERONC code CB//00400) of Instituto de Salud Carlos III, Ministry of Science and Innovation (Madrid, Spain), number CB16/12/00400; The International Myeloma Foundation-Black Swan Research Initiative (Los Angeles, CA) (Grant: LSHB-CT-2006-018708). A.B.S.S. was supported by a grant from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior CAPES/PROEX, number: 88887.688096/2022-00. R.M.P. was supported by a grant from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/DGPU), number: 000281/2016-06 and CAPES/PROEX 641/2018, Brazil, and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro of Brazil (FAPERJ), number: E01/200/537/2018. E.S.B. was supported by a grant from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior CAPES/PROEX, number: 88887.335769/2019-00 and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), number: E-26/200.192/2020, Brazil
    • …
    corecore