42 research outputs found

    Gene Expression, Function and Ischemia Tolerance in Male and Female Rat Hearts After Sub-Toxic Levels of Angiotensin II

    Get PDF
    To examine the response to chronic high-dose angiotensin II (Ang II) and a proposed milder response in female hearts with respect to gene expression and ischemic injury. Female and male litter–matched rats were treated with 400 ng kg−1 min−1 Ang II for 14 days. Hearts were isolated, subjected to 30-min ischemia and 30-min reperfusion in combination with functional monitoring and thereafter harvested for gene expression, WB and histology. Ang II-treated hearts showed signs of non-hypertrophic remodeling and had significantly higher end diastolic pressure after reperfusion, but no significant gender difference was detected. Ang II increased expression of genes related to heart function (ANF, ÎČ-MCH, Ankrd-1, PKC-α, PKC-ÎŽ TNF-α); fibrosis (Col I-α1, Col III-α1, Fn-1, Timp1) and apoptosis (P53, Casp-3) without changing heart weight but with 68% increase in collagen content. High (sub-toxic) dose of Ang II resulted in marked heart remodeling and diastolic dysfunction after ischemia without significant myocyte hypertrophy or ventricular chamber dilatation. Although there were some gender-dependent differences in gene expression, female gender did not protect against the overall response

    SIMBIO-SYS : Scientific Cameras and Spectrometer for the BepiColombo Mission

    Get PDF
    The SIMBIO-SYS (Spectrometer and Imaging for MPO BepiColombo Integrated Observatory SYStem) is a complex instrument suite part of the scientific payload of the Mercury Planetary Orbiter for the BepiColombo mission, the last of the cornerstone missions of the European Space Agency (ESA) Horizon + science program. The SIMBIO-SYS instrument will provide all the science imaging capability of the BepiColombo MPO spacecraft. It consists of three channels: the STereo imaging Channel (STC), with a broad spectral band in the 400-950 nm range and medium spatial resolution (at best 58 m/px), that will provide Digital Terrain Model of the entire surface of the planet with an accuracy better than 80 m; the High Resolution Imaging Channel (HRIC), with broad spectral bands in the 400-900 nm range and high spatial resolution (at best 6 m/px), that will provide high-resolution images of about 20% of the surface, and the Visible and near-Infrared Hyperspectral Imaging channel (VIHI), with high spectral resolution (6 nm at finest) in the 400-2000 nm range and spatial resolution reaching 120 m/px, it will provide global coverage at 480 m/px with the spectral information, assuming the first orbit around Mercury with periherm at 480 km from the surface. SIMBIO-SYS will provide high-resolution images, the Digital Terrain Model of the entire surface, and the surface composition using a wide spectral range, as for instance detecting sulphides or material derived by sulphur and carbon oxidation, at resolutions and coverage higher than the MESSENGER mission with a full co-alignment of the three channels. All the data that will be acquired will allow to cover a wide range of scientific objectives, from the surface processes and cartography up to the internal structure, contributing to the libration experiment, and the surface-exosphere interaction. The global 3D and spectral mapping will allow to study the morphology and the composition of any surface feature. In this work, we describe the on-ground calibrations and the results obtained, providing an important overview of the instrument performances. The calibrations have been performed at channel and at system levels, utilizing specific setup in most of the cases realized for SIMBIO-SYS. In the case of the stereo camera (STC), it has been necessary to have a validation of the new stereo concept adopted, based on the push-frame. This work describes also the results of the Near-Earth Commissioning Phase performed few weeks after the Launch (20 October 2018). According to the calibration results and the first commissioning the three channels are working very well.Peer reviewe

    Nanostructured biomaterials with antimicrobial properties

    No full text
    The present review is intended to bring together the main advances in the field of nanostructured biomaterials with antimicrobial properties. It is generally accepted that the discovery of antibiotics was of great importance but, nowadays new antimicrobial agents are needed and/or their better administration routes. The limitation of the use of antibiotics is essential because of the following reasons: the excessive use of antibiotics leads to the development of antibiotic resistant microorganisms; there are some alternatives for many types of infections, many of these alternatives being less toxic and do not lead to antibiotic similar resistance. In compliance with the above presented, the use of antibiotic is recommended to be eliminated (when alternatives are available) or to be reduced by using combined therapy when possible or to administrate these drugs through targeted or loco-regional drug delivery systems. © 2014 Bentham Science Publishers

    Physical Characterization of Turbot (Psetta Maxima) Originated Natural Hydroxyapatite

    No full text
    Nowadays hydroxyapatite is one of the most popular biomaterials, which is used in various medical and dental applications areas as graft material. Bovine bone is the biggest source for natural hydroxyapatite production, but its production can lead to very dangerous disease, like mad cow disease, without high degree calcination. Hydroxyapatite produced from marine sources is much safer and easier to produce than bovine hydroxyapatite. Here in this study natural hydroxyapatite and related phases were produced from a local source turbot (Psetta maxima). Beside the main bony internal structure, there are koshers (cycloid scale) on its skin. Koshers are bulky bumps, looking like flat, small and rounded structures. Internal bones and those bulky bumps were cleaned from flesh with chemicals and calcined at 850°C for 4 hours. After calcinations, especially those bulky bumps, were formed into mesoporous structures with very light bluish color. Those mesoporous structures can be used as natural mesoporous hydroxyapatite structures for bone grafting purposes. The internal bones have also formed hydroxyapatite. Scanning electron microscope and X-ray diffraction studies were performed. I this study it is found that the bones of turbot consist of hydroxyapatite and TCP related phases. The aim of this study is to produce natural hydroxyapatite structures from turbot scale with low carbon footprint, without harming the environment and without using complex chemicals

    Structural features and nitrogen positions in titanium oxynitride films grown in plasma of magnetron discharge

    No full text
    The paper addresses the results of the analysis of the structural features of nitrogen-containing titanium oxides films, deposited by reactive magnetron sputtering. The films have a nanocrystalline two-phase structure and consist of anatase and rutile crystallites, regardless of the coating deposition regimes. No traces of titanium nitride phase are found in the film and nitrogen atoms in oxide form are localized at the grain boundaries of the deposited film
    corecore